Richardson extrapolation for the discrete iterated modified projection solution

Approximate solutions of Urysohn integral equations using projection methods involve integrals which need to be evaluated using a numerical quadrature formula. It gives rise to the discrete versions of the projection methods. For r ≥ 1, a space of piecewise polynomials of degree ≤ r − 1 with respect...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Numerical algorithms Ročník 85; číslo 1; s. 171 - 189
Hlavní autori: Kulkarni, Rekha P., Rakshit, Gobinda
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 01.09.2020
Springer Nature B.V
Predmet:
ISSN:1017-1398, 1572-9265
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Approximate solutions of Urysohn integral equations using projection methods involve integrals which need to be evaluated using a numerical quadrature formula. It gives rise to the discrete versions of the projection methods. For r ≥ 1, a space of piecewise polynomials of degree ≤ r − 1 with respect to an uniform partition is chosen to be the approximating space and the projection is chosen to be the interpolatory projection at r Gauss points. Asymptotic expansion for the iterated modified projection solution is available in literature. In this paper, we obtain an asymptotic expansion for the discrete iterated modified projection solution and use Richardson extrapolation to improve the order of convergence. Our results indicate a choice of a numerical quadrature which preserves the order of convergence in the continuous case. Numerical results are given for a specific example.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1017-1398
1572-9265
DOI:10.1007/s11075-019-00808-5