CSO-CNN: circulatory system optimization-based cascade region CNN for fault estimation and driver behavior detection
The evolution of new trends in the automobile industry is creating more comfortable and convenient means of transportation. But still there exist manifold challenges in detecting legal and illegal drivers; therefore, evaluating the behaviors of drivers needs to be addressed. Taking these into consid...
Uložené v:
| Vydané v: | Signal, image and video processing Ročník 17; číslo 6; s. 3063 - 3071 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
London
Springer London
01.09.2023
Springer Nature B.V |
| Predmet: | |
| ISSN: | 1863-1703, 1863-1711 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | The evolution of new trends in the automobile industry is creating more comfortable and convenient means of transportation. But still there exist manifold challenges in detecting legal and illegal drivers; therefore, evaluating the behaviors of drivers needs to be addressed. Taking these into consideration his paper proposes a novel cascade region convolutional neural network-based circulatory system optimization algorithm (CRCNN++ based CSO) to attain optimal multitask framework which includes behavior evaluation, identity authentication of drivers, vehicle diagnosis as well as estimating the fault of the vehicle. In this paper, two diverse naturalistic driving behavior public datasets namely HCRL and UAH drive datasets are collected and pre-processed via normalization as well as scaling process. The preprocessed feature is then extracted and the dimensions are minimized using the stacked autoencoder technique. The CRCNN++-based CSO is employed in determining to multitask which includes identity authentication, behavioral evaluation, vehicle diagnosis, and faults estimation is performed. Finally, the efficiency of the proposed CRCNN++-based CSO method is analyzed by evaluating various metrics namely receiver operating characteristic curve, accuracy, false positive rate, precision, Cohen Kappa score, true positive rate, and F1-Score. The comparative analysis is carried out for various existing techniques and the proposed approach. From the evaluation results, it is revealed that the proposed CRCNN++-based CSO approach delivers better performance in driver identification through driving style behavior. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1863-1703 1863-1711 |
| DOI: | 10.1007/s11760-023-02527-w |