3D shallow deep neural network for fast and precise segmentation of left atrium

Knowledge of the underlying anatomy of the left atrium can promote improved diagnostic protocols and clinical interventions. Hence, an automatic segmentation of the left atrium on magnetic resonance imaging (MRI) can support diagnosis, treatment and surgery planning of heart. However, due to the sma...

Full description

Saved in:
Bibliographic Details
Published in:Multimedia systems Vol. 29; no. 3; pp. 1739 - 1749
Main Authors: Kausar, Asma, Razzak, Imran, Shapiai, Mohammad Ibrahim, Beheshti, Amin
Format: Journal Article
Language:English
Published: Berlin/Heidelberg Springer Berlin Heidelberg 01.06.2023
Springer Nature B.V
Subjects:
ISSN:0942-4962, 1432-1882
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Knowledge of the underlying anatomy of the left atrium can promote improved diagnostic protocols and clinical interventions. Hence, an automatic segmentation of the left atrium on magnetic resonance imaging (MRI) can support diagnosis, treatment and surgery planning of heart. However, due to the small size of left atrium with respect to the whole MRI volume, accurate segmentation of left atrium is challenging. Most of the existing deep learning approaches are based on cropping or cascading networks. In this work, we present a novel deep learning architecture for the segmentation of left atrium from MRI volume which incorporates the residual learning based encoder-decoder network. We introduce a loss function and parameter adjustments to deal with the issue of class imbalance and unavailability of large medical imaging dataset. To facilitate the high quality segmentation, we present a three-dimensional multi-scale residual learning based architecture that maintains coarse and fine level features throughout the network. Experimental results have shown a considerable improvement in segmentation performance by surpassing the current benchmarks (especially the winner of Left Atrial Segmentation Challenge-2018) with fewer parameters compared to the state-of-the-art approaches, thus potentially supporting cardiac diagnosis and surgery without adding any extensive pre-processing of input volumes or any post-processing on the base network’s output.
AbstractList Knowledge of the underlying anatomy of the left atrium can promote improved diagnostic protocols and clinical interventions. Hence, an automatic segmentation of the left atrium on magnetic resonance imaging (MRI) can support diagnosis, treatment and surgery planning of heart. However, due to the small size of left atrium with respect to the whole MRI volume, accurate segmentation of left atrium is challenging. Most of the existing deep learning approaches are based on cropping or cascading networks. In this work, we present a novel deep learning architecture for the segmentation of left atrium from MRI volume which incorporates the residual learning based encoder-decoder network. We introduce a loss function and parameter adjustments to deal with the issue of class imbalance and unavailability of large medical imaging dataset. To facilitate the high quality segmentation, we present a three-dimensional multi-scale residual learning based architecture that maintains coarse and fine level features throughout the network. Experimental results have shown a considerable improvement in segmentation performance by surpassing the current benchmarks (especially the winner of Left Atrial Segmentation Challenge-2018) with fewer parameters compared to the state-of-the-art approaches, thus potentially supporting cardiac diagnosis and surgery without adding any extensive pre-processing of input volumes or any post-processing on the base network’s output.
Author Beheshti, Amin
Razzak, Imran
Shapiai, Mohammad Ibrahim
Kausar, Asma
Author_xml – sequence: 1
  givenname: Asma
  orcidid: 0000-0002-7853-1819
  surname: Kausar
  fullname: Kausar, Asma
  email: aftabasma@graduate.utm.my
  organization: MJIIT, Universiti Teknologi Malaysia
– sequence: 2
  givenname: Imran
  surname: Razzak
  fullname: Razzak, Imran
  organization: Deakin University
– sequence: 3
  givenname: Mohammad Ibrahim
  surname: Shapiai
  fullname: Shapiai, Mohammad Ibrahim
  organization: MJIIT, Universiti Teknologi Malaysia
– sequence: 4
  givenname: Amin
  surname: Beheshti
  fullname: Beheshti, Amin
  organization: Macquire University
BookMark eNp9kEtPwzAQhC1UJNrCH-BkiXPAryT2EZWnVKkXOFtOsi4paRxsRxX_HkOQkDj0NFppvp3dWaBZ73pA6JKSa0pIeRMIyTnJCKNZGssikydoTgVnGZWSzdCcKMEyoQp2hhYh7AihZcHJHG34HQ5vpuvcATcAA-5h9KZLEg_Ov2PrPLYmRGz6Bg8e6jYADrDdQx9NbF2PncUd2GSIvh335-jUmi7Axa8u0evD_cvqKVtvHp9Xt-us5lTFrLGs4pWoSlYoyYHkNhe0MUrUxHAAm1PDJKOy4awEVYlaJoMCpYCzoi6BL9HVtHfw7mOEEPXOjb5PkZqzvBCKqlwkF5tctXcheLB68O3e-E9Nif4uTk_F6VSc_ilOywTJf1DdTr9Gb9ruOMonNKScfgv-76oj1Bd-OIPt
CitedBy_id crossref_primary_10_1007_s00530_023_01202_x
crossref_primary_10_1109_TMI_2025_3526364
crossref_primary_10_1002_ima_23075
crossref_primary_10_1007_s00530_023_01100_2
crossref_primary_10_1016_j_eswa_2025_128559
crossref_primary_10_3389_fphys_2024_1478347
crossref_primary_10_1155_2022_5311825
crossref_primary_10_1007_s00521_022_07117_4
crossref_primary_10_1007_s00530_022_00977_9
crossref_primary_10_1080_20479700_2023_2166206
crossref_primary_10_1007_s11694_025_03481_6
crossref_primary_10_1016_j_procs_2024_04_198
Cites_doi 10.1016/j.media.2016.01.005
10.1007/s00034-019-01246-3
10.1016/j.compbiomed.2019.103444
10.1109/TPAMI.2016.2577031
10.1109/TPAMI.2016.2572683
10.1016/j.acra.2012.03.022
10.1007/BF03015764
10.1109/TMI.2018.2845918
10.1186/1532-429X-12-65
10.1038/nature14539
10.1093/ehjci/jev014
10.1002/mrm.26631
10.1111/jce.12199
10.1109/TIP.2005.852470
10.1109/TMI.2015.2398818
10.1016/j.media.2016.10.004
10.1109/TPAMI.2012.231
10.1161/CIRCIMAGING.112.980037
10.15420/cfr.2016.2.2.115
10.1109/TPAMI.2017.2699184
10.1109/TMI.2018.2806309
10.1007/978-3-030-12029-0
10.1007/978-3-319-24574-4_28
10.1007/978-3-319-59050-9_28
10.1186/s12968-018-0471-x
10.1007/978-3-319-10584-0_20
10.1007/978-3-319-75238-9_25
10.1007/978-3-319-75541-0_13
10.1007/978-3-319-10584-0_23
10.1007/978-3-319-75238-9_38
10.1007/978-3-030-12029-0_23
10.1007/978-3-658-25326-4_7
10.1007/978-3-319-46493-0_38
10.1145/3065386
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021
The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1007/s00530-021-00776-8
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Engineering Database
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Computer Science Database

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1432-1882
EndPage 1749
ExternalDocumentID 10_1007_s00530_021_00776_8
GroupedDBID --Z
-4Z
-59
-5G
-BR
-EM
-ET
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
203
28-
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
78A
85S
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9O
PF0
PT4
PT5
QF4
QM1
QN7
QO4
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TAE
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YIN
YLTOR
Z45
Z7R
Z7X
Z83
Z88
Z8M
Z8R
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABRTQ
ACSTC
ADHKG
AETEA
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ARAPS
ATHPR
AYFIA
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
K7-
M7S
PHGZM
PHGZT
PQGLB
PTHSS
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
L6V
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c319t-df2b3b4b726983e05f541da94c0a3eef51a28218d327e9b4c8f549e99e326c7e3
IEDL.DBID RSV
ISICitedReferencesCount 35
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000633300100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0942-4962
IngestDate Sun Nov 30 04:23:31 EST 2025
Tue Nov 18 21:28:20 EST 2025
Sat Nov 29 03:45:57 EST 2025
Fri Feb 21 02:43:22 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Deep learning
CNN
Left atrium
Segmentation
Cardiac segmentation
Shallow network
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-df2b3b4b726983e05f541da94c0a3eef51a28218d327e9b4c8f549e99e326c7e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7853-1819
PQID 3256491954
PQPubID 2043725
PageCount 11
ParticipantIDs proquest_journals_3256491954
crossref_primary_10_1007_s00530_021_00776_8
crossref_citationtrail_10_1007_s00530_021_00776_8
springer_journals_10_1007_s00530_021_00776_8
PublicationCentury 2000
PublicationDate 20230600
2023-06-00
20230601
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 6
  year: 2023
  text: 20230600
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Multimedia systems
PublicationTitleAbbrev Multimedia Systems
PublicationYear 2023
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Joo, Wong, Naik, Savoldelli (CR19) 2005; 52
Ning, Delhomme, LeCun, Piano, Bottou, Barbano (CR29) 2005; 14
CR18
Lang, Badano, Mor-Avi, Afilalo, Armstrong, Ernande, Flachskampf, Foster, Goldstein, Kuznetsova, Lancellotti, Muraru, Picard, Rietzschel, Rudski, Spencer, Tsang, Voigt (CR23) 2015; 16
CR17
Peterzan, Rider, Anderson (CR30) 2016; 2
Caudron, Fares, Lefebvre, Vivier, Petitjean, Dacher (CR5) 2012; 19
CR16
Shelhamer, Long, Darrell (CR35) 2017; 39
Gerche, Claessen, Bruaene, Pattyn, van Cleemput, Gewillig, Bogaert, Dymarkowski, Claus, Heidbuchel (CR9) 2013; 6
CR15
CR37
CR36
CR13
Tobon-Gomez, Geers, Peters, Weese, Pinto, Karim, Ammar, Daoudi, Margeta, Sandoval, Stender, Zheng, Zuluaga, Betancur, Ayache, Chikh, Dillenseger, Kelm, Mahmoudi, Ourselin, Schlaefer, Schaeffter, Razavi, Rhode (CR41) 2015; 34
CR12
CR34
He, Zhang, Ren, Sun (CR14) 2016; 2016
CR31
Ren, He, Girshick, Sun (CR33) 2015; 39
Akoum, Fernandez, Wilson, McGann, Kholmovski, Marrouche (CR1) 2013; 24
Kamnitsas, Ledig, Newcombe, Simpson, Kane, Menon, Rueckert, Glocker (CR21) 2017; 36
Avendi, Kheradvar, Jafarkhani (CR3) 2017; 78
Farabet, Couprie, Najman, LeCun (CR8) 2012; 35
CR4
McGann, Akoum, Patel, Kholmovski, Revelo, Damal, Wilson, Cates, Harrison, Ranjan, Burgon, Greene, Kim, DiBella, Parker, Macleod, Marrouche (CR28) 2014; 7
Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (CR38) 2014; 15
CR7
Tobon-Gomez, Geers, Peters, Weese, Pinto, Karim, Ammar, Daoudi, Margeta, Sandoval, Stender, Zheng, Zuluaga, Betancur, Ayache, Chikh, Dillenseger, Kelm, Mahmoudi, Ourselin, Schlaefer, Schaeffter, Razavi, Rhode (CR40) 2015; 34
Avendi, Kheradvar, Jafarkhani (CR2) 2016; 30
CR25
CR24
Maceira, Cosín-Sales, Roughton, Prasad, Pennell (CR27) 2010; 12
CR45
CR22
Szegedy, Liu, Jia, Sermanet, Reed, Anguelov, Erhan, Vanhoucke, Rabinovich (CR39) 2015; 2015
CR43
CR20
CR42
Rehman, Naz, Razzak, Akram, Imran (CR32) 2020; 39
Gibson, Giganti, Hu, Bonmati, Bandula, Gurusamy, Davidson, Pereira, Clarkson, Barratt (CR10) 2018; 37
Wang, Xiong, Nalar, Hansen, Kharche, Seemann, Loewe, Fedorov, Zhao (CR44) 2019; 114
Li, Chen, Qi, Dou, Fu, Heng (CR26) 2018; 37
Chen, Papandreou, Kokkinos, Murphy, Yuille (CR6) 2018; 40
Goodfellow, Bengio, Courville (CR11) 2015; 521
E Gibson (776_CR10) 2018; 37
776_CR31
N Akoum (776_CR1) 2013; 24
F Ning (776_CR29) 2005; 14
776_CR18
X Li (776_CR26) 2018; 37
776_CR7
776_CR17
776_CR4
776_CR16
776_CR15
776_CR37
776_CR36
776_CR13
776_CR12
776_CR34
E Shelhamer (776_CR35) 2017; 39
A Maceira (776_CR27) 2010; 12
MR Avendi (776_CR2) 2016; 30
S Ren (776_CR33) 2015; 39
C Tobon-Gomez (776_CR40) 2015; 34
C Tobon-Gomez (776_CR41) 2015; 34
776_CR43
776_CR20
MA Peterzan (776_CR30) 2016; 2
776_CR42
A Rehman (776_CR32) 2020; 39
L-C Chen (776_CR6) 2018; 40
K He (776_CR14) 2016; 2016
IG Goodfellow (776_CR11) 2015; 521
MR Avendi (776_CR3) 2017; 78
R Lang (776_CR23) 2015; 16
776_CR25
C McGann (776_CR28) 2014; 7
776_CR24
776_CR45
HS Joo (776_CR19) 2005; 52
776_CR22
J Caudron (776_CR5) 2012; 19
C Farabet (776_CR8) 2012; 35
C Szegedy (776_CR39) 2015; 2015
Y Wang (776_CR44) 2019; 114
N Srivastava (776_CR38) 2014; 15
AL Gerche (776_CR9) 2013; 6
K Kamnitsas (776_CR21) 2017; 36
References_xml – ident: CR45
– volume: 2016
  start-page: 770
  year: 2016
  end-page: 778
  ident: CR14
  article-title: Deep residual learning for image recognition
  publication-title: IEEE Conf. Comput. Vis. Pattern Recogn. (CVPR)
– ident: CR22
– volume: 30
  start-page: 108
  year: 2016
  end-page: 119
  ident: CR2
  article-title: A combined deep-learning and deformable-model approach to fully automatic segmentation of the left ventricle in cardiac MRI
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2016.01.005
– ident: CR18
– volume: 39
  start-page: 757
  issue: 2
  year: 2020
  end-page: 775
  ident: CR32
  article-title: A deep learning-based framework for automatic brain tumors classification using transfer learning
  publication-title: Circ Syst Signal PR
  doi: 10.1007/s00034-019-01246-3
– ident: CR43
– volume: 114
  start-page: 103444
  year: 2019
  ident: CR44
  article-title: A robust computational framework for estimating 3D Bi-Atrial chamber wall thickness
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2019.103444
– volume: 39
  start-page: 1137
  year: 2015
  end-page: 1149
  ident: CR33
  article-title: Faster R-CNN: towards real-time object detection with region proposal networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2577031
– volume: 39
  start-page: 640
  year: 2017
  end-page: 651
  ident: CR35
  article-title: Fully convolutional networks for semantic segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2572683
– ident: CR4
– volume: 19
  start-page: 991
  issue: 8
  year: 2012
  end-page: 1002
  ident: CR5
  article-title: Cardiac MRI assessment of right ventricular function in acquired heart disease: factors of variability
  publication-title: Acad. Radiol.
  doi: 10.1016/j.acra.2012.03.022
– ident: CR16
– ident: CR37
– ident: CR12
– volume: 52
  start-page: 568
  year: 2005
  end-page: 574
  ident: CR19
  article-title: The value of screening preoperative chest x-rays: a systematic review
  publication-title: Can. J. Anaesth.
  doi: 10.1007/BF03015764
– volume: 37
  start-page: 2663
  year: 2018
  end-page: 2674
  ident: CR26
  article-title: H-DenseUNet: hybrid densely connected UNet for liver and tumor segmentation from CT volumes
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2018.2845918
– volume: 15
  start-page: 1929
  year: 2014
  end-page: 1958
  ident: CR38
  article-title: Dropout: a simple way to prevent neural networks from overfitting
  publication-title: J. Mach. Learn. Res.
– volume: 12
  start-page: 65
  year: 2010
  end-page: 65
  ident: CR27
  article-title: Reference left atrial dimensions and volumes by steady state free precession cardiovascular magnetic resonance
  publication-title: J. Cardiovasc. Magn. Reson.
  doi: 10.1186/1532-429X-12-65
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: CR11
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 16
  start-page: 233
  issue: 3
  year: 2015
  end-page: 70
  ident: CR23
  article-title: Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging
  publication-title: Eur. Heart J. Cardiovasc. Imaging
  doi: 10.1093/ehjci/jev014
– volume: 78
  start-page: 2439
  issue: 6
  year: 2017
  end-page: 2448
  ident: CR3
  article-title: Automatic segmentation of the right ventricle from cardiac MRI using a learning-based approach
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.26631
– volume: 24
  start-page: 1104
  issue: 10
  year: 2013
  end-page: 9
  ident: CR1
  article-title: Association of atrial fibrosis quantified using LGE-MRI with atrial appendage thrombus and spontaneous contrast on transesophageal echocardiography in patients with atrial fibrillation
  publication-title: J. Cardiovasc. Electrophysiol.
  doi: 10.1111/jce.12199
– ident: CR25
– volume: 7
  start-page: 23
  year: 2014
  end-page: 30
  ident: CR28
  article-title: Atrial fibrillation ablation outcome is predicted by left atrial remodeling on MRI
  publication-title: Circ.: Arrhythmia Electrophysiol.
– ident: CR42
– volume: 2015
  start-page: 1
  year: 2015
  end-page: 9
  ident: CR39
  article-title: Going deeper with convolutions
  publication-title: IEEE Conf. Comput. Vis. Pattern Recogn. (CVPR)
– volume: 14
  start-page: 1360
  year: 2005
  end-page: 1371
  ident: CR29
  article-title: Toward automatic phenotyping of developing embryos from videos
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2005.852470
– volume: 34
  start-page: 1460
  year: 2015
  end-page: 1473
  ident: CR41
  article-title: Benchmark for algorithms segmenting the left atrium from 3D CT and MRI datasets
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2015.2398818
– volume: 36
  start-page: 61
  year: 2017
  end-page: 78
  ident: CR21
  article-title: Efficient multiscale 3D CNN with fully connected CRF for accurate brain lesion segmentation
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2016.10.004
– volume: 35
  start-page: 1915
  issue: 8
  year: 2012
  end-page: 1929
  ident: CR8
  article-title: Learning hierarchical features for scene labeling
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2012.231
– ident: CR15
– ident: CR17
– ident: CR31
– volume: 6
  start-page: 329
  year: 2013
  end-page: 338
  ident: CR9
  article-title: Cardiac MRI: a new gold standard for ventricular volume quantification during high-intensity exercise
  publication-title: Circ. Cardiovasc. Imaging
  doi: 10.1161/CIRCIMAGING.112.980037
– ident: CR13
– volume: 2
  start-page: 115
  issue: 2
  year: 2016
  end-page: 122
  ident: CR30
  article-title: The role of cardiovascular magnetic resonance imaging in heart failure
  publication-title: Cardiac Failure Rev.
  doi: 10.15420/cfr.2016.2.2.115
– volume: 34
  start-page: 1460
  issue: 7
  year: 2015
  end-page: 1473
  ident: CR40
  article-title: Benchmark for algorithms segmenting the left atrium from 3D CT and MRI datasets
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2015.2398818
– ident: CR34
– ident: CR36
– volume: 40
  start-page: 834
  year: 2018
  end-page: 848
  ident: CR6
  article-title: DeepLab: semantic image segmentation with deep convolutional Nets, Atrous convolution, and fully connected CRFs
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2017.2699184
– ident: CR7
– ident: CR24
– volume: 37
  start-page: 1822
  year: 2018
  end-page: 1834
  ident: CR10
  article-title: Automatic multi-organ segmentation on abdominal CT with dense V-networks
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2018.2806309
– ident: CR20
– ident: 776_CR43
– volume: 7
  start-page: 23
  year: 2014
  ident: 776_CR28
  publication-title: Circ.: Arrhythmia Electrophysiol.
– ident: 776_CR31
  doi: 10.1007/978-3-030-12029-0
– ident: 776_CR34
  doi: 10.1007/978-3-319-24574-4_28
– volume: 24
  start-page: 1104
  issue: 10
  year: 2013
  ident: 776_CR1
  publication-title: J. Cardiovasc. Electrophysiol.
  doi: 10.1111/jce.12199
– volume: 34
  start-page: 1460
  issue: 7
  year: 2015
  ident: 776_CR40
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2015.2398818
– ident: 776_CR25
  doi: 10.1007/978-3-319-59050-9_28
– volume: 39
  start-page: 640
  year: 2017
  ident: 776_CR35
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2572683
– ident: 776_CR4
  doi: 10.1186/s12968-018-0471-x
– ident: 776_CR24
– volume: 35
  start-page: 1915
  issue: 8
  year: 2012
  ident: 776_CR8
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2012.231
– ident: 776_CR13
  doi: 10.1007/978-3-319-10584-0_20
– volume: 2016
  start-page: 770
  year: 2016
  ident: 776_CR14
  publication-title: IEEE Conf. Comput. Vis. Pattern Recogn. (CVPR)
– volume: 19
  start-page: 991
  issue: 8
  year: 2012
  ident: 776_CR5
  publication-title: Acad. Radiol.
  doi: 10.1016/j.acra.2012.03.022
– volume: 39
  start-page: 757
  issue: 2
  year: 2020
  ident: 776_CR32
  publication-title: Circ Syst Signal PR
  doi: 10.1007/s00034-019-01246-3
– ident: 776_CR7
– volume: 37
  start-page: 2663
  year: 2018
  ident: 776_CR26
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2018.2845918
– volume: 14
  start-page: 1360
  year: 2005
  ident: 776_CR29
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2005.852470
– volume: 114
  start-page: 103444
  year: 2019
  ident: 776_CR44
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2019.103444
– volume: 16
  start-page: 233
  issue: 3
  year: 2015
  ident: 776_CR23
  publication-title: Eur. Heart J. Cardiovasc. Imaging
  doi: 10.1093/ehjci/jev014
– ident: 776_CR37
– ident: 776_CR17
  doi: 10.1007/978-3-319-75238-9_25
– volume: 521
  start-page: 436
  year: 2015
  ident: 776_CR11
  publication-title: Nature
  doi: 10.1038/nature14539
– ident: 776_CR16
  doi: 10.1007/978-3-319-75541-0_13
– ident: 776_CR42
– ident: 776_CR12
  doi: 10.1007/978-3-319-10584-0_23
– volume: 6
  start-page: 329
  year: 2013
  ident: 776_CR9
  publication-title: Circ. Cardiovasc. Imaging
  doi: 10.1161/CIRCIMAGING.112.980037
– ident: 776_CR20
  doi: 10.1007/978-3-319-75238-9_38
– volume: 2
  start-page: 115
  issue: 2
  year: 2016
  ident: 776_CR30
  publication-title: Cardiac Failure Rev.
  doi: 10.15420/cfr.2016.2.2.115
– volume: 15
  start-page: 1929
  year: 2014
  ident: 776_CR38
  publication-title: J. Mach. Learn. Res.
– ident: 776_CR45
  doi: 10.1007/978-3-030-12029-0_23
– volume: 78
  start-page: 2439
  issue: 6
  year: 2017
  ident: 776_CR3
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.26631
– ident: 776_CR18
  doi: 10.1007/978-3-658-25326-4_7
– volume: 30
  start-page: 108
  year: 2016
  ident: 776_CR2
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2016.01.005
– volume: 37
  start-page: 1822
  year: 2018
  ident: 776_CR10
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2018.2806309
– ident: 776_CR15
  doi: 10.1007/978-3-319-46493-0_38
– volume: 39
  start-page: 1137
  year: 2015
  ident: 776_CR33
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2577031
– volume: 12
  start-page: 65
  year: 2010
  ident: 776_CR27
  publication-title: J. Cardiovasc. Magn. Reson.
  doi: 10.1186/1532-429X-12-65
– volume: 2015
  start-page: 1
  year: 2015
  ident: 776_CR39
  publication-title: IEEE Conf. Comput. Vis. Pattern Recogn. (CVPR)
– ident: 776_CR22
  doi: 10.1145/3065386
– volume: 34
  start-page: 1460
  year: 2015
  ident: 776_CR41
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2015.2398818
– volume: 36
  start-page: 61
  year: 2017
  ident: 776_CR21
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2016.10.004
– volume: 52
  start-page: 568
  year: 2005
  ident: 776_CR19
  publication-title: Can. J. Anaesth.
  doi: 10.1007/BF03015764
– ident: 776_CR36
– volume: 40
  start-page: 834
  year: 2018
  ident: 776_CR6
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2017.2699184
SSID ssj0017630
Score 2.4885492
Snippet Knowledge of the underlying anatomy of the left atrium can promote improved diagnostic protocols and clinical interventions. Hence, an automatic segmentation...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1739
SubjectTerms Accuracy
Algorithms
Artificial neural networks
Atria
Cardiac arrhythmia
Clinical medicine
Computer Communication Networks
Computer Graphics
Computer Science
Cryptology
Data Storage Representation
Datasets
Deep learning
Diagnosis
Encoders-Decoders
Heart
Image segmentation
Machine learning
Magnetic resonance imaging
Medical imaging
Multimedia Information Systems
Neural networks
Operating Systems
Parameters
Role of Deep Learning Models & Analytics in Industrial Multimedia Environment
Semantics
Special Issue Paper
Surgery
SummonAdditionalLinks – databaseName: Engineering Database
  dbid: M7S
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09T8MwELWgMLBQPkWhIA9sYJHETmNPCAEVAypIgNQtSpwzqtQmoUnh72O7TiuQ6MIc24ryzr7L-e49hM5pJAMGqSRBxkPCVCiJkNQnGRMygp7SRmPZ9R-jwYAPh-LZJdwqV1bZnIn2oM4KaXLkV1T7ZiYMP9l1-UGMapS5XXUSGutow7Ak-LZ072Vxi6D3js2xCBYQJnqBa5qxrXPG-jxiChQsow3hPx3TMtr8dUFq_U6__d833kHbLuLEN3MT2UVrkO-hdqPmgN3m3kdP9A5XRlql-MIZQIkN1aWemM8LxbGObrFKqhoneYZLQ4pRAa7gfeK6l3JcKDwGpQfU09FscoDe-vevtw_EyS0QDY6oSaaClKYsjYKe4BS8UIXMzxLBpJdQABX6if4_83lGgwhEyiTXAwQIAToE1MDSQ9TKixyOEE6AUy7TUEYeZ0oGCei4Q0mIPMl5yrwO8ptvHUvHRW4kMcbxgkXZ4hNrfGKLT8w76GIxp5wzcawc3W1Aid2urOIlIh102cC6fPz3aserVztBW0aFfl5B1kWtejqDU7QpP-tRNT2zNvkNHEbl4Q
  priority: 102
  providerName: ProQuest
Title 3D shallow deep neural network for fast and precise segmentation of left atrium
URI https://link.springer.com/article/10.1007/s00530-021-00776-8
https://www.proquest.com/docview/3256491954
Volume 29
WOSCitedRecordID wos000633300100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1432-1882
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0017630
  issn: 0942-4962
  databaseCode: P5Z
  dateStart: 20230201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1432-1882
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0017630
  issn: 0942-4962
  databaseCode: K7-
  dateStart: 20230201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1432-1882
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0017630
  issn: 0942-4962
  databaseCode: M7S
  dateStart: 20230201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1432-1882
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0017630
  issn: 0942-4962
  databaseCode: BENPR
  dateStart: 20230201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1432-1882
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017630
  issn: 0942-4962
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60evBifWK1lj1404Uku2l2j76KoNTiC_ESks2sFDQtTap_3908WhQV9JJLZpcwj-yXzMw3AAcsUB7HWFEvET7l2ldUKubShEsVYFcbpynY9a-Cfl88PspB1RSW1dXudUqyeFPPmt2svzjUlhQUHDRULMKSOe6EHdhwc_swyx2YiCn-rEjuUS67XtUq8_0en4-jOcb8khYtTpte83_PuQarFbokx6U7rMMCphvQrCc3kCqQN-GanZHMjlEZvZMEcUwsraVZmJZF4cQgWaKjLCdRmpCxJcDIkGT4_Fp1KqVkpMkLaiOQT4bT1y24753fnV7QarQCNYaQOU20F7OYx4HXlYKh42ufu0kkuXIihqh9NzLfYq5ImBegjLkSRkCilGjgnjEi24ZGOkpxB0iEggkV-ypwBNfKi9BgDK0wcJQQMXda4NYaDlXFO27HX7yEM8bkQmOh0VhYaCwULTicrRmXrBu_Srdrw4VVBGYhM1iOS8tn14Kj2lDz2z_vtvs38T1YsRPoy-qxNjTyyRT3YVm95cNs0oGlk_P-4KYDi5cB7djC0ltzHfhPncJnPwDk0eAY
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VggSXlq-KLQV8gBNYJLaztg8IIUrVapeFQ5F6C4kzRpXa7LJJqfhT_EbGTrIrkOitB86xLTt-Mx57Zt4APJfaCYWl46IyGVc-c9w6mfJKWadx7Ak0kV1_qmczc3JiP2_AryEXJoRVDjoxKupq7sIb-WtJZ7OygZ_s7eI7D1Wjgnd1KKHRwWKCPy_pyta8Odqn_X0hxMGH4_eHvK8qwGkOtuWVF6UsVanF2BqJSeYzlVaFVS4pJKLP0oKuIamppNBoS-UMNbBoLZKlQ_OXNO4NuKmk0UGuJpqvvBYkq_FNxyrBlR2LPkknpuoFtCc8BEREBh1u_jwI19btXw7ZeM4dbP9vf-gubPUWNXvXicA92MD6PmwP1SpYr7wewCe5z5pQOmZ-ySrEBQtUntSx7gLhGVnvzBdNy4q6YotA-tEga_DbeZ-dVbO5Z2foqUG7PL04fwhfrmVZO7BZz2t8BKxAI40rM6cTo7wTBZJd5R3qxBlTqmQE6bC3ueu51kPJj7N8xRId8ZATHvKIh9yM4OWqz6JjGrmy9d4AgrzXOk2-RsAIXg0wWn_-92i7V4_2DG4fHn-c5tOj2eQx3BFk53XRcnuw2S4v8Anccj_a02b5NMoDg6_XDa_fveBChA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB50FfHi-sT1mYM3DbZNuk2O4rooyrrgg72VNp2IoN1lW_Xvm_Sxq6KCeO4khHmQL52ZbwAOWKA8jrGiXiJ8yrWvqFTMpQmXKsC2Nk5TsOtfBb2eGAxk_0MXf1HtXqcky54Gy9KU5sejRB9PGt-s7zjUlhcUfDRUzMIct4X09r1-cz_JI5joKf6ySO5RLtte1Tbz_R6fr6Yp3vySIi1unm7z_2dehqUKdZKT0k1WYAbTVWjWEx1IFeBrcM06JLPjVYZvJEEcEUt3aRamZbE4MQiX6CjLSZQmZGSJMTIkGT48Vx1MKRlq8oTaCOTjx5fndbjrnt2entNq5AI1BpI5TbQXs5jHgdeWgqHja5-7SSS5ciKGqH03Mm80VyTMC1DGXAkjIFFKNDDQGJdtQCMdprgJJELBhIp9FTiCa-VFaLCHVhg4SoiYOy1wa22HquIjt2MxnsIJk3KhsdBoLCw0FooWHE7WjEo2jl-ld2ojhlVkZiEzGI9Ly3PXgqPaaNPPP--29TfxfVjod7rh1UXvchsW7ZD6ssBsBxr5-AV3YV695o_ZeK9w2HcV1Od-
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3D+shallow+deep+neural+network+for+fast+and+precise+segmentation+of+left+atrium&rft.jtitle=Multimedia+systems&rft.au=Kausar%2C+Asma&rft.au=Razzak%2C+Imran&rft.au=Shapiai%2C+Mohammad+Ibrahim&rft.au=Beheshti%2C+Amin&rft.date=2023-06-01&rft.issn=0942-4962&rft.eissn=1432-1882&rft.volume=29&rft.issue=3&rft.spage=1739&rft.epage=1749&rft_id=info:doi/10.1007%2Fs00530-021-00776-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00530_021_00776_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0942-4962&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0942-4962&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0942-4962&client=summon