3D shallow deep neural network for fast and precise segmentation of left atrium
Knowledge of the underlying anatomy of the left atrium can promote improved diagnostic protocols and clinical interventions. Hence, an automatic segmentation of the left atrium on magnetic resonance imaging (MRI) can support diagnosis, treatment and surgery planning of heart. However, due to the sma...
Gespeichert in:
| Veröffentlicht in: | Multimedia systems Jg. 29; H. 3; S. 1739 - 1749 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.06.2023
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 0942-4962, 1432-1882 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Knowledge of the underlying anatomy of the left atrium can promote improved diagnostic protocols and clinical interventions. Hence, an automatic segmentation of the left atrium on magnetic resonance imaging (MRI) can support diagnosis, treatment and surgery planning of heart. However, due to the small size of left atrium with respect to the whole MRI volume, accurate segmentation of left atrium is challenging. Most of the existing deep learning approaches are based on cropping or cascading networks. In this work, we present a novel deep learning architecture for the segmentation of left atrium from MRI volume which incorporates the residual learning based encoder-decoder network. We introduce a loss function and parameter adjustments to deal with the issue of class imbalance and unavailability of large medical imaging dataset. To facilitate the high quality segmentation, we present a three-dimensional multi-scale residual learning based architecture that maintains coarse and fine level features throughout the network. Experimental results have shown a considerable improvement in segmentation performance by surpassing the current benchmarks (especially the winner of Left Atrial Segmentation Challenge-2018) with fewer parameters compared to the state-of-the-art approaches, thus potentially supporting cardiac diagnosis and surgery without adding any extensive pre-processing of input volumes or any post-processing on the base network’s output. |
|---|---|
| AbstractList | Knowledge of the underlying anatomy of the left atrium can promote improved diagnostic protocols and clinical interventions. Hence, an automatic segmentation of the left atrium on magnetic resonance imaging (MRI) can support diagnosis, treatment and surgery planning of heart. However, due to the small size of left atrium with respect to the whole MRI volume, accurate segmentation of left atrium is challenging. Most of the existing deep learning approaches are based on cropping or cascading networks. In this work, we present a novel deep learning architecture for the segmentation of left atrium from MRI volume which incorporates the residual learning based encoder-decoder network. We introduce a loss function and parameter adjustments to deal with the issue of class imbalance and unavailability of large medical imaging dataset. To facilitate the high quality segmentation, we present a three-dimensional multi-scale residual learning based architecture that maintains coarse and fine level features throughout the network. Experimental results have shown a considerable improvement in segmentation performance by surpassing the current benchmarks (especially the winner of Left Atrial Segmentation Challenge-2018) with fewer parameters compared to the state-of-the-art approaches, thus potentially supporting cardiac diagnosis and surgery without adding any extensive pre-processing of input volumes or any post-processing on the base network’s output. |
| Author | Beheshti, Amin Razzak, Imran Shapiai, Mohammad Ibrahim Kausar, Asma |
| Author_xml | – sequence: 1 givenname: Asma orcidid: 0000-0002-7853-1819 surname: Kausar fullname: Kausar, Asma email: aftabasma@graduate.utm.my organization: MJIIT, Universiti Teknologi Malaysia – sequence: 2 givenname: Imran surname: Razzak fullname: Razzak, Imran organization: Deakin University – sequence: 3 givenname: Mohammad Ibrahim surname: Shapiai fullname: Shapiai, Mohammad Ibrahim organization: MJIIT, Universiti Teknologi Malaysia – sequence: 4 givenname: Amin surname: Beheshti fullname: Beheshti, Amin organization: Macquire University |
| BookMark | eNp9kEtPwzAQhC1UJNrCH-BkiXPAryT2EZWnVKkXOFtOsi4paRxsRxX_HkOQkDj0NFppvp3dWaBZ73pA6JKSa0pIeRMIyTnJCKNZGssikydoTgVnGZWSzdCcKMEyoQp2hhYh7AihZcHJHG34HQ5vpuvcATcAA-5h9KZLEg_Ov2PrPLYmRGz6Bg8e6jYADrDdQx9NbF2PncUd2GSIvh335-jUmi7Axa8u0evD_cvqKVtvHp9Xt-us5lTFrLGs4pWoSlYoyYHkNhe0MUrUxHAAm1PDJKOy4awEVYlaJoMCpYCzoi6BL9HVtHfw7mOEEPXOjb5PkZqzvBCKqlwkF5tctXcheLB68O3e-E9Nif4uTk_F6VSc_ilOywTJf1DdTr9Gb9ruOMonNKScfgv-76oj1Bd-OIPt |
| CitedBy_id | crossref_primary_10_1007_s00530_023_01202_x crossref_primary_10_1109_TMI_2025_3526364 crossref_primary_10_1002_ima_23075 crossref_primary_10_1007_s00530_023_01100_2 crossref_primary_10_1016_j_eswa_2025_128559 crossref_primary_10_3389_fphys_2024_1478347 crossref_primary_10_1155_2022_5311825 crossref_primary_10_1007_s00521_022_07117_4 crossref_primary_10_1007_s00530_022_00977_9 crossref_primary_10_1080_20479700_2023_2166206 crossref_primary_10_1007_s11694_025_03481_6 crossref_primary_10_1016_j_procs_2024_04_198 |
| Cites_doi | 10.1016/j.media.2016.01.005 10.1007/s00034-019-01246-3 10.1016/j.compbiomed.2019.103444 10.1109/TPAMI.2016.2577031 10.1109/TPAMI.2016.2572683 10.1016/j.acra.2012.03.022 10.1007/BF03015764 10.1109/TMI.2018.2845918 10.1186/1532-429X-12-65 10.1038/nature14539 10.1093/ehjci/jev014 10.1002/mrm.26631 10.1111/jce.12199 10.1109/TIP.2005.852470 10.1109/TMI.2015.2398818 10.1016/j.media.2016.10.004 10.1109/TPAMI.2012.231 10.1161/CIRCIMAGING.112.980037 10.15420/cfr.2016.2.2.115 10.1109/TPAMI.2017.2699184 10.1109/TMI.2018.2806309 10.1007/978-3-030-12029-0 10.1007/978-3-319-24574-4_28 10.1007/978-3-319-59050-9_28 10.1186/s12968-018-0471-x 10.1007/978-3-319-10584-0_20 10.1007/978-3-319-75238-9_25 10.1007/978-3-319-75541-0_13 10.1007/978-3-319-10584-0_23 10.1007/978-3-319-75238-9_38 10.1007/978-3-030-12029-0_23 10.1007/978-3-658-25326-4_7 10.1007/978-3-319-46493-0_38 10.1145/3065386 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021. |
| DBID | AAYXX CITATION 8FE 8FG ABJCF AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L6V M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| DOI | 10.1007/s00530-021-00776-8 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection (subscription) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Engineering Database (subscription) ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering collection |
| DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Computer Science Database |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1432-1882 |
| EndPage | 1749 |
| ExternalDocumentID | 10_1007_s00530_021_00776_8 |
| GroupedDBID | --Z -4Z -59 -5G -BR -EM -ET -Y2 -~C -~X .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 203 28- 29M 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 78A 85S 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYOK AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EDO EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P9O PF0 PT4 PT5 QF4 QM1 QN7 QO4 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TAE TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YIN YLTOR Z45 Z7R Z7X Z83 Z88 Z8M Z8R Z8W Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABJCF ABRTQ ACSTC ADHKG AETEA AEZWR AFDZB AFFHD AFHIU AFKRA AFOHR AGQPQ AHPBZ AHWEU AIXLP ARAPS ATHPR AYFIA BENPR BGLVJ CCPQU CITATION HCIFZ K7- M7S PHGZM PHGZT PQGLB PTHSS 8FE 8FG AZQEC DWQXO GNUQQ JQ2 L6V P62 PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c319t-df2b3b4b726983e05f541da94c0a3eef51a28218d327e9b4c8f549e99e326c7e3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 35 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000633300100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0942-4962 |
| IngestDate | Sun Nov 30 04:23:31 EST 2025 Tue Nov 18 21:28:20 EST 2025 Sat Nov 29 03:45:57 EST 2025 Fri Feb 21 02:43:22 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Deep learning CNN Left atrium Segmentation Cardiac segmentation Shallow network |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-df2b3b4b726983e05f541da94c0a3eef51a28218d327e9b4c8f549e99e326c7e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-7853-1819 |
| PQID | 3256491954 |
| PQPubID | 2043725 |
| PageCount | 11 |
| ParticipantIDs | proquest_journals_3256491954 crossref_primary_10_1007_s00530_021_00776_8 crossref_citationtrail_10_1007_s00530_021_00776_8 springer_journals_10_1007_s00530_021_00776_8 |
| PublicationCentury | 2000 |
| PublicationDate | 20230600 2023-06-00 20230601 |
| PublicationDateYYYYMMDD | 2023-06-01 |
| PublicationDate_xml | – month: 6 year: 2023 text: 20230600 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationTitle | Multimedia systems |
| PublicationTitleAbbrev | Multimedia Systems |
| PublicationYear | 2023 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | Joo, Wong, Naik, Savoldelli (CR19) 2005; 52 Ning, Delhomme, LeCun, Piano, Bottou, Barbano (CR29) 2005; 14 CR18 Lang, Badano, Mor-Avi, Afilalo, Armstrong, Ernande, Flachskampf, Foster, Goldstein, Kuznetsova, Lancellotti, Muraru, Picard, Rietzschel, Rudski, Spencer, Tsang, Voigt (CR23) 2015; 16 CR17 Peterzan, Rider, Anderson (CR30) 2016; 2 Caudron, Fares, Lefebvre, Vivier, Petitjean, Dacher (CR5) 2012; 19 CR16 Shelhamer, Long, Darrell (CR35) 2017; 39 Gerche, Claessen, Bruaene, Pattyn, van Cleemput, Gewillig, Bogaert, Dymarkowski, Claus, Heidbuchel (CR9) 2013; 6 CR15 CR37 CR36 CR13 Tobon-Gomez, Geers, Peters, Weese, Pinto, Karim, Ammar, Daoudi, Margeta, Sandoval, Stender, Zheng, Zuluaga, Betancur, Ayache, Chikh, Dillenseger, Kelm, Mahmoudi, Ourselin, Schlaefer, Schaeffter, Razavi, Rhode (CR41) 2015; 34 CR12 CR34 He, Zhang, Ren, Sun (CR14) 2016; 2016 CR31 Ren, He, Girshick, Sun (CR33) 2015; 39 Akoum, Fernandez, Wilson, McGann, Kholmovski, Marrouche (CR1) 2013; 24 Kamnitsas, Ledig, Newcombe, Simpson, Kane, Menon, Rueckert, Glocker (CR21) 2017; 36 Avendi, Kheradvar, Jafarkhani (CR3) 2017; 78 Farabet, Couprie, Najman, LeCun (CR8) 2012; 35 CR4 McGann, Akoum, Patel, Kholmovski, Revelo, Damal, Wilson, Cates, Harrison, Ranjan, Burgon, Greene, Kim, DiBella, Parker, Macleod, Marrouche (CR28) 2014; 7 Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (CR38) 2014; 15 CR7 Tobon-Gomez, Geers, Peters, Weese, Pinto, Karim, Ammar, Daoudi, Margeta, Sandoval, Stender, Zheng, Zuluaga, Betancur, Ayache, Chikh, Dillenseger, Kelm, Mahmoudi, Ourselin, Schlaefer, Schaeffter, Razavi, Rhode (CR40) 2015; 34 Avendi, Kheradvar, Jafarkhani (CR2) 2016; 30 CR25 CR24 Maceira, Cosín-Sales, Roughton, Prasad, Pennell (CR27) 2010; 12 CR45 CR22 Szegedy, Liu, Jia, Sermanet, Reed, Anguelov, Erhan, Vanhoucke, Rabinovich (CR39) 2015; 2015 CR43 CR20 CR42 Rehman, Naz, Razzak, Akram, Imran (CR32) 2020; 39 Gibson, Giganti, Hu, Bonmati, Bandula, Gurusamy, Davidson, Pereira, Clarkson, Barratt (CR10) 2018; 37 Wang, Xiong, Nalar, Hansen, Kharche, Seemann, Loewe, Fedorov, Zhao (CR44) 2019; 114 Li, Chen, Qi, Dou, Fu, Heng (CR26) 2018; 37 Chen, Papandreou, Kokkinos, Murphy, Yuille (CR6) 2018; 40 Goodfellow, Bengio, Courville (CR11) 2015; 521 E Gibson (776_CR10) 2018; 37 776_CR31 N Akoum (776_CR1) 2013; 24 F Ning (776_CR29) 2005; 14 776_CR18 X Li (776_CR26) 2018; 37 776_CR7 776_CR17 776_CR4 776_CR16 776_CR15 776_CR37 776_CR36 776_CR13 776_CR12 776_CR34 E Shelhamer (776_CR35) 2017; 39 A Maceira (776_CR27) 2010; 12 MR Avendi (776_CR2) 2016; 30 S Ren (776_CR33) 2015; 39 C Tobon-Gomez (776_CR40) 2015; 34 C Tobon-Gomez (776_CR41) 2015; 34 776_CR43 776_CR20 MA Peterzan (776_CR30) 2016; 2 776_CR42 A Rehman (776_CR32) 2020; 39 L-C Chen (776_CR6) 2018; 40 K He (776_CR14) 2016; 2016 IG Goodfellow (776_CR11) 2015; 521 MR Avendi (776_CR3) 2017; 78 R Lang (776_CR23) 2015; 16 776_CR25 C McGann (776_CR28) 2014; 7 776_CR24 776_CR45 HS Joo (776_CR19) 2005; 52 776_CR22 J Caudron (776_CR5) 2012; 19 C Farabet (776_CR8) 2012; 35 C Szegedy (776_CR39) 2015; 2015 Y Wang (776_CR44) 2019; 114 N Srivastava (776_CR38) 2014; 15 AL Gerche (776_CR9) 2013; 6 K Kamnitsas (776_CR21) 2017; 36 |
| References_xml | – ident: CR45 – volume: 2016 start-page: 770 year: 2016 end-page: 778 ident: CR14 article-title: Deep residual learning for image recognition publication-title: IEEE Conf. Comput. Vis. Pattern Recogn. (CVPR) – ident: CR22 – volume: 30 start-page: 108 year: 2016 end-page: 119 ident: CR2 article-title: A combined deep-learning and deformable-model approach to fully automatic segmentation of the left ventricle in cardiac MRI publication-title: Med. Image Anal. doi: 10.1016/j.media.2016.01.005 – ident: CR18 – volume: 39 start-page: 757 issue: 2 year: 2020 end-page: 775 ident: CR32 article-title: A deep learning-based framework for automatic brain tumors classification using transfer learning publication-title: Circ Syst Signal PR doi: 10.1007/s00034-019-01246-3 – ident: CR43 – volume: 114 start-page: 103444 year: 2019 ident: CR44 article-title: A robust computational framework for estimating 3D Bi-Atrial chamber wall thickness publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2019.103444 – volume: 39 start-page: 1137 year: 2015 end-page: 1149 ident: CR33 article-title: Faster R-CNN: towards real-time object detection with region proposal networks publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2016.2577031 – volume: 39 start-page: 640 year: 2017 end-page: 651 ident: CR35 article-title: Fully convolutional networks for semantic segmentation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2016.2572683 – ident: CR4 – volume: 19 start-page: 991 issue: 8 year: 2012 end-page: 1002 ident: CR5 article-title: Cardiac MRI assessment of right ventricular function in acquired heart disease: factors of variability publication-title: Acad. Radiol. doi: 10.1016/j.acra.2012.03.022 – ident: CR16 – ident: CR37 – ident: CR12 – volume: 52 start-page: 568 year: 2005 end-page: 574 ident: CR19 article-title: The value of screening preoperative chest x-rays: a systematic review publication-title: Can. J. Anaesth. doi: 10.1007/BF03015764 – volume: 37 start-page: 2663 year: 2018 end-page: 2674 ident: CR26 article-title: H-DenseUNet: hybrid densely connected UNet for liver and tumor segmentation from CT volumes publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2018.2845918 – volume: 15 start-page: 1929 year: 2014 end-page: 1958 ident: CR38 article-title: Dropout: a simple way to prevent neural networks from overfitting publication-title: J. Mach. Learn. Res. – volume: 12 start-page: 65 year: 2010 end-page: 65 ident: CR27 article-title: Reference left atrial dimensions and volumes by steady state free precession cardiovascular magnetic resonance publication-title: J. Cardiovasc. Magn. Reson. doi: 10.1186/1532-429X-12-65 – volume: 521 start-page: 436 year: 2015 end-page: 444 ident: CR11 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 16 start-page: 233 issue: 3 year: 2015 end-page: 70 ident: CR23 article-title: Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging publication-title: Eur. Heart J. Cardiovasc. Imaging doi: 10.1093/ehjci/jev014 – volume: 78 start-page: 2439 issue: 6 year: 2017 end-page: 2448 ident: CR3 article-title: Automatic segmentation of the right ventricle from cardiac MRI using a learning-based approach publication-title: Magn. Reson. Med. doi: 10.1002/mrm.26631 – volume: 24 start-page: 1104 issue: 10 year: 2013 end-page: 9 ident: CR1 article-title: Association of atrial fibrosis quantified using LGE-MRI with atrial appendage thrombus and spontaneous contrast on transesophageal echocardiography in patients with atrial fibrillation publication-title: J. Cardiovasc. Electrophysiol. doi: 10.1111/jce.12199 – ident: CR25 – volume: 7 start-page: 23 year: 2014 end-page: 30 ident: CR28 article-title: Atrial fibrillation ablation outcome is predicted by left atrial remodeling on MRI publication-title: Circ.: Arrhythmia Electrophysiol. – ident: CR42 – volume: 2015 start-page: 1 year: 2015 end-page: 9 ident: CR39 article-title: Going deeper with convolutions publication-title: IEEE Conf. Comput. Vis. Pattern Recogn. (CVPR) – volume: 14 start-page: 1360 year: 2005 end-page: 1371 ident: CR29 article-title: Toward automatic phenotyping of developing embryos from videos publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2005.852470 – volume: 34 start-page: 1460 year: 2015 end-page: 1473 ident: CR41 article-title: Benchmark for algorithms segmenting the left atrium from 3D CT and MRI datasets publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2015.2398818 – volume: 36 start-page: 61 year: 2017 end-page: 78 ident: CR21 article-title: Efficient multiscale 3D CNN with fully connected CRF for accurate brain lesion segmentation publication-title: Med. Image Anal. doi: 10.1016/j.media.2016.10.004 – volume: 35 start-page: 1915 issue: 8 year: 2012 end-page: 1929 ident: CR8 article-title: Learning hierarchical features for scene labeling publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2012.231 – ident: CR15 – ident: CR17 – ident: CR31 – volume: 6 start-page: 329 year: 2013 end-page: 338 ident: CR9 article-title: Cardiac MRI: a new gold standard for ventricular volume quantification during high-intensity exercise publication-title: Circ. Cardiovasc. Imaging doi: 10.1161/CIRCIMAGING.112.980037 – ident: CR13 – volume: 2 start-page: 115 issue: 2 year: 2016 end-page: 122 ident: CR30 article-title: The role of cardiovascular magnetic resonance imaging in heart failure publication-title: Cardiac Failure Rev. doi: 10.15420/cfr.2016.2.2.115 – volume: 34 start-page: 1460 issue: 7 year: 2015 end-page: 1473 ident: CR40 article-title: Benchmark for algorithms segmenting the left atrium from 3D CT and MRI datasets publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2015.2398818 – ident: CR34 – ident: CR36 – volume: 40 start-page: 834 year: 2018 end-page: 848 ident: CR6 article-title: DeepLab: semantic image segmentation with deep convolutional Nets, Atrous convolution, and fully connected CRFs publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2017.2699184 – ident: CR7 – ident: CR24 – volume: 37 start-page: 1822 year: 2018 end-page: 1834 ident: CR10 article-title: Automatic multi-organ segmentation on abdominal CT with dense V-networks publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2018.2806309 – ident: CR20 – ident: 776_CR43 – volume: 7 start-page: 23 year: 2014 ident: 776_CR28 publication-title: Circ.: Arrhythmia Electrophysiol. – ident: 776_CR31 doi: 10.1007/978-3-030-12029-0 – ident: 776_CR34 doi: 10.1007/978-3-319-24574-4_28 – volume: 24 start-page: 1104 issue: 10 year: 2013 ident: 776_CR1 publication-title: J. Cardiovasc. Electrophysiol. doi: 10.1111/jce.12199 – volume: 34 start-page: 1460 issue: 7 year: 2015 ident: 776_CR40 publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2015.2398818 – ident: 776_CR25 doi: 10.1007/978-3-319-59050-9_28 – volume: 39 start-page: 640 year: 2017 ident: 776_CR35 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2016.2572683 – ident: 776_CR4 doi: 10.1186/s12968-018-0471-x – ident: 776_CR24 – volume: 35 start-page: 1915 issue: 8 year: 2012 ident: 776_CR8 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2012.231 – ident: 776_CR13 doi: 10.1007/978-3-319-10584-0_20 – volume: 2016 start-page: 770 year: 2016 ident: 776_CR14 publication-title: IEEE Conf. Comput. Vis. Pattern Recogn. (CVPR) – volume: 19 start-page: 991 issue: 8 year: 2012 ident: 776_CR5 publication-title: Acad. Radiol. doi: 10.1016/j.acra.2012.03.022 – volume: 39 start-page: 757 issue: 2 year: 2020 ident: 776_CR32 publication-title: Circ Syst Signal PR doi: 10.1007/s00034-019-01246-3 – ident: 776_CR7 – volume: 37 start-page: 2663 year: 2018 ident: 776_CR26 publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2018.2845918 – volume: 14 start-page: 1360 year: 2005 ident: 776_CR29 publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2005.852470 – volume: 114 start-page: 103444 year: 2019 ident: 776_CR44 publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2019.103444 – volume: 16 start-page: 233 issue: 3 year: 2015 ident: 776_CR23 publication-title: Eur. Heart J. Cardiovasc. Imaging doi: 10.1093/ehjci/jev014 – ident: 776_CR37 – ident: 776_CR17 doi: 10.1007/978-3-319-75238-9_25 – volume: 521 start-page: 436 year: 2015 ident: 776_CR11 publication-title: Nature doi: 10.1038/nature14539 – ident: 776_CR16 doi: 10.1007/978-3-319-75541-0_13 – ident: 776_CR42 – ident: 776_CR12 doi: 10.1007/978-3-319-10584-0_23 – volume: 6 start-page: 329 year: 2013 ident: 776_CR9 publication-title: Circ. Cardiovasc. Imaging doi: 10.1161/CIRCIMAGING.112.980037 – ident: 776_CR20 doi: 10.1007/978-3-319-75238-9_38 – volume: 2 start-page: 115 issue: 2 year: 2016 ident: 776_CR30 publication-title: Cardiac Failure Rev. doi: 10.15420/cfr.2016.2.2.115 – volume: 15 start-page: 1929 year: 2014 ident: 776_CR38 publication-title: J. Mach. Learn. Res. – ident: 776_CR45 doi: 10.1007/978-3-030-12029-0_23 – volume: 78 start-page: 2439 issue: 6 year: 2017 ident: 776_CR3 publication-title: Magn. Reson. Med. doi: 10.1002/mrm.26631 – ident: 776_CR18 doi: 10.1007/978-3-658-25326-4_7 – volume: 30 start-page: 108 year: 2016 ident: 776_CR2 publication-title: Med. Image Anal. doi: 10.1016/j.media.2016.01.005 – volume: 37 start-page: 1822 year: 2018 ident: 776_CR10 publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2018.2806309 – ident: 776_CR15 doi: 10.1007/978-3-319-46493-0_38 – volume: 39 start-page: 1137 year: 2015 ident: 776_CR33 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2016.2577031 – volume: 12 start-page: 65 year: 2010 ident: 776_CR27 publication-title: J. Cardiovasc. Magn. Reson. doi: 10.1186/1532-429X-12-65 – volume: 2015 start-page: 1 year: 2015 ident: 776_CR39 publication-title: IEEE Conf. Comput. Vis. Pattern Recogn. (CVPR) – ident: 776_CR22 doi: 10.1145/3065386 – volume: 34 start-page: 1460 year: 2015 ident: 776_CR41 publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2015.2398818 – volume: 36 start-page: 61 year: 2017 ident: 776_CR21 publication-title: Med. Image Anal. doi: 10.1016/j.media.2016.10.004 – volume: 52 start-page: 568 year: 2005 ident: 776_CR19 publication-title: Can. J. Anaesth. doi: 10.1007/BF03015764 – ident: 776_CR36 – volume: 40 start-page: 834 year: 2018 ident: 776_CR6 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2017.2699184 |
| SSID | ssj0017630 |
| Score | 2.4885492 |
| Snippet | Knowledge of the underlying anatomy of the left atrium can promote improved diagnostic protocols and clinical interventions. Hence, an automatic segmentation... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1739 |
| SubjectTerms | Accuracy Algorithms Artificial neural networks Atria Cardiac arrhythmia Clinical medicine Computer Communication Networks Computer Graphics Computer Science Cryptology Data Storage Representation Datasets Deep learning Diagnosis Encoders-Decoders Heart Image segmentation Machine learning Magnetic resonance imaging Medical imaging Multimedia Information Systems Neural networks Operating Systems Parameters Role of Deep Learning Models & Analytics in Industrial Multimedia Environment Semantics Special Issue Paper Surgery |
| SummonAdditionalLinks | – databaseName: Engineering Database (subscription) dbid: M7S link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagMLBQnqJQkAc2sEhiJ44nhICKqSABUrfI8QNVKklpUvj72I7TCiS6MOdsWbk739l3_j4AzomtHgWUIh3QCJEEY8Q4ThBNdRIKzhNOG7IJOhymoxF78hdulW-rbPdEt1HLUtg78itsYjNhFp_sevqBLGuUra56Co11sGFREkLXuve8qCIY33F3LIyYZbAk8o9m3NM5a30Bsg0KDtEGpT8D0zLb_FUgdXFn0P3vinfAts844U1jIrtgTRV7oNuyOUDv3PvgEd_BylKrlF9QKjWFFurSDCyaRnFosluoeVVDXkg4taAYlYKVenv3r5cKWGo4UdoI1LPx_P0AvA7uX24fkKdbQML4YY2kjnKck5xGCUuxCmIdk1ByRkTAsVI6Drk5n4WpxBFVLCciNQJMMaZMCiiowoegU5SFOgJQ4CQWIojNdmsmDHCeCxnnUmHLZ0dk2ANh-68z4bHILSXGJFugKDv9ZEY_mdNPlvbAxWLMtEHiWCndb5WSea-ssqVGeuCyVevy89-zHa-e7QRsWRb6poOsDzr1bK5Owab4rMfV7MzZ5DfFzOSc priority: 102 providerName: ProQuest |
| Title | 3D shallow deep neural network for fast and precise segmentation of left atrium |
| URI | https://link.springer.com/article/10.1007/s00530-021-00776-8 https://www.proquest.com/docview/3256491954 |
| Volume | 29 |
| WOSCitedRecordID | wos000633300100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1432-1882 dateEnd: 20241212 omitProxy: false ssIdentifier: ssj0017630 issn: 0942-4962 databaseCode: K7- dateStart: 20230201 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database (subscription) customDbUrl: eissn: 1432-1882 dateEnd: 20241212 omitProxy: false ssIdentifier: ssj0017630 issn: 0942-4962 databaseCode: M7S dateStart: 20230201 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest advanced technologies & aerospace journals customDbUrl: eissn: 1432-1882 dateEnd: 20241212 omitProxy: false ssIdentifier: ssj0017630 issn: 0942-4962 databaseCode: P5Z dateStart: 20230201 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1432-1882 dateEnd: 20241212 omitProxy: false ssIdentifier: ssj0017630 issn: 0942-4962 databaseCode: BENPR dateStart: 20230201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: Springer Standard Collection customDbUrl: eissn: 1432-1882 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017630 issn: 0942-4962 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZg48CF8RSDMeXADSK1Tdo0Rx6bkJDGtAGauFRpmqJJWzetHfx9kj42gQAJLr3USSvHTtza_j6Ac2qyRxZjOLaYg6lHCOaCeJj5sWdLITzBCrIJ1uv5oxHvl01haVXtXqUk85161exm7MXCpqQgx6DB_ibU9XHnG8KGwfB5lTvQHpP_WeFUP5x7Ttkq8_0cn4-jdYz5JS2anzbdxv_ecxd2yugSXRXmsAcbKtmHRsXcgEpHPoAHcotSQ6Mye0eRUnNkYC31wKQoCkc6kkWxSDMkkgjNDQBGqlCqXqdlp1KCZjGaqFgLZIvxcnoIT93O480dLqkVsNQ-l-EodkIS0pA5HveJstzYpXYkOJWWIErFri30t5jtR8RhiodU-lqAK86VDvckU-QIasksUceAJPFcKS1Xb616QouEoYzcMFLEcNfRyG6CXWk4kCXuuKG_mAQrxORcY4HWWJBrLPCbcLEaMy9QN36VblULF5QemAZEx3KUGzy7JlxWC7W-_fNsJ38TP4Vtw0BfVI-1oJYtluoMtuRbNk4Xbahfd3r9QRs27xlum8LSob723Zd2brMfbQDe0w |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB5RWqlcoLRFLKWtD-2JWk1iJ44PCKFSBFrY9kAlbqljTxASZJdNAPGn-hsZ57GrIpUbh55jj-T4m4c9nvkAPkmfPQqU4kWgIi4TIbg2IuEqLZLQGpMY1ZJNqNEoPT3VPxfgT18L459V9jaxMdRubP0d-VdBvllq359sZ3LFPWuUz672FBotLIZ4d0tHtmr7cI_293MU7X8_-XbAO1YBbgluNXdFlItc5ipKdCowiItYhs5oaQMjEIs4NHQMCVMnIoU6lzalARq1Rop0rEJBcp_BcylS5fVqqPgsa0G62tzpaEnL1knUFek0pXoe7QH3DyKaDjo8_dsRzqPbBwnZxs_tr_xvf-gVLHcRNdttVWAVFrB8DSs9WwXrjNcb-CH2WOWpY8a3zCFOmG_lSRPL9iE8o-idFaaqmSkdm_imHxWyCs8uu-qsko0LdoEFDain59eXb-HXkyxrDRbLcYnrwKxIYmuDmNwJCQxEnlsX5w6F5-uTLhxA2O9tZrte657y4yKbdYlu8JARHrIGD1k6gK3ZnEnbaeTR0Zs9CLLO6lTZHAED-NLDaP7539I2Hpf2EV4enBwfZUeHo-E7WIoozmtfy23CYj29xvfwwt7U59X0Q6MPDH4_NbzuAftMQT8 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZS8QwEB68EF-8xfXMg28atm3SpnkUdVGUVfBg30qaQwS3u2y7-vdNeqwHKojPnYQwmUkmnZnvAzigLnvkMYaNxwJMI0IwFyTCLDaRL4WIBKvIJli3G_d6_OZDF39Z7d6kJKueBofSlBXtoTLtSeObsx0Pu_KCEo8Gx9MwS10hvXuv3z5M8gjWe8q_LJzahfAoqNtmvp_j89X0Hm9-SZGWN09n6f9rXobFOupEx5WZrMCUzlZhqWF0QLWDr8E1OUW5o1cZvCKl9RA5uEs7MKuKxZGNcJEReYFEptDQAWPkGuX6sV93MGVoYNCzNlagGD2N--tw3zm7OznHNeUCltYXC6xMkJKUpiyIeEy0F5qQ-kpwKj1BtDahL-wbzY8VCZjmKZWxFeCac23DQMk02YCZbJDpTUCSRKGUXmiPXDuhR9JUqjBVmjhOO6r8FviNthNZ45E7WoznZIKkXGossRpLSo0lcQsOJ2OGFRrHr9I7zSYmtWfmCbExHuUO564FR82mvX_-ebatv4nvw_zNaSe5uuhebsOCI6mvCsx2YKYYjfUuzMmX4ikf7ZUG-waZF-Y5 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3D+shallow+deep+neural+network+for+fast+and+precise+segmentation+of+left+atrium&rft.jtitle=Multimedia+systems&rft.au=Kausar%2C+Asma&rft.au=Razzak%2C+Imran&rft.au=Shapiai%2C+Mohammad+Ibrahim&rft.au=Beheshti%2C+Amin&rft.date=2023-06-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=0942-4962&rft.eissn=1432-1882&rft.volume=29&rft.issue=3&rft.spage=1739&rft.epage=1749&rft_id=info:doi/10.1007%2Fs00530-021-00776-8&rft.externalDocID=10_1007_s00530_021_00776_8 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0942-4962&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0942-4962&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0942-4962&client=summon |