Hybrid momentum accelerated bat algorithm with GWO based optimization approach for spam classification

Spam emails have become more prevalent, necessitating the development of more effective and reliable anti-spam filters. Internet users face security threats, and youngsters are exposed to inappropriate content while receiving spam emails. The gigantic data flow between billions of people and the tre...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Multimedia tools and applications Ročník 83; číslo 9; s. 26929 - 26969
Hlavní autoři: Dhal, Pradip, Azad, Chandrashekhar
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.03.2024
Springer Nature B.V
Témata:
ISSN:1573-7721, 1380-7501, 1573-7721
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Spam emails have become more prevalent, necessitating the development of more effective and reliable anti-spam filters. Internet users face security threats, and youngsters are exposed to inappropriate content while receiving spam emails. The gigantic data flow between billions of people and the tremendous number of features (attributes) makes the task more tiresome and complex. Feature Selection (FS) technique is essential for overwhelming accuracy, time and spatial complexity when we have high dimensional data (i.e., the number of features is very large). Spam emails have been successfully filtered and detected using Machine Learning (ML) methods by various researchers nowadays. This work proposes a hybrid binary Metaheuristic Algorithm (MA) based Feature Selection (FS) approach for classifying email spam. The proposed FS approach is based upon two MA, i.e., Bat Algorithm (BA) with Grey Wolf Optimization(GWO). A novel concept of bat momentum has been introduced here, replacing the previous bat velocity. Two quantity, i.e., velocity and momentum, has an entirely different effect on the particle (i.e. bats). But they always follow the exact directions for both of them. To provide the best possible set of features for the FS process, the proposed approach uses an amalgamation technique to reach both the global and local optimum solution. To get the global optimum solution, a new momentum-based equation has been added to the BA, substituting the velocity equation from the prior BA. The GWO property has been added to the momentum-based equation mentioned above to improve the FS process search capabilities. Here a novel concept convergence timer has been introduced, which can eliminate the convergence issue in the iterative algorithm if it arises. A novel GWO based lévy flight update has been introduced here to produce the local optimum solution. We have evaluated our proposed method on two benchmark spam corpora ( Spambase , SpamAssassin ) having different significant properties. The proposed FS approach has been tested on various classification and clustering algorithms to check the robustness and how the model will behave on unknown data. After comparing multiple state-of-the-art and existing approaches, the proposed method is superior in boosting classification accuracy while minimizing the features in the feature set for misclassifying legitimate emails as spam.
AbstractList Spam emails have become more prevalent, necessitating the development of more effective and reliable anti-spam filters. Internet users face security threats, and youngsters are exposed to inappropriate content while receiving spam emails. The gigantic data flow between billions of people and the tremendous number of features (attributes) makes the task more tiresome and complex. Feature Selection (FS) technique is essential for overwhelming accuracy, time and spatial complexity when we have high dimensional data (i.e., the number of features is very large). Spam emails have been successfully filtered and detected using Machine Learning (ML) methods by various researchers nowadays. This work proposes a hybrid binary Metaheuristic Algorithm (MA) based Feature Selection (FS) approach for classifying email spam. The proposed FS approach is based upon two MA, i.e., Bat Algorithm (BA) with Grey Wolf Optimization(GWO). A novel concept of bat momentum has been introduced here, replacing the previous bat velocity. Two quantity, i.e., velocity and momentum, has an entirely different effect on the particle (i.e. bats). But they always follow the exact directions for both of them. To provide the best possible set of features for the FS process, the proposed approach uses an amalgamation technique to reach both the global and local optimum solution. To get the global optimum solution, a new momentum-based equation has been added to the BA, substituting the velocity equation from the prior BA. The GWO property has been added to the momentum-based equation mentioned above to improve the FS process search capabilities. Here a novel concept convergence timer has been introduced, which can eliminate the convergence issue in the iterative algorithm if it arises. A novel GWO based lévy flight update has been introduced here to produce the local optimum solution. We have evaluated our proposed method on two benchmark spam corpora (Spambase, SpamAssassin) having different significant properties. The proposed FS approach has been tested on various classification and clustering algorithms to check the robustness and how the model will behave on unknown data. After comparing multiple state-of-the-art and existing approaches, the proposed method is superior in boosting classification accuracy while minimizing the features in the feature set for misclassifying legitimate emails as spam.
Spam emails have become more prevalent, necessitating the development of more effective and reliable anti-spam filters. Internet users face security threats, and youngsters are exposed to inappropriate content while receiving spam emails. The gigantic data flow between billions of people and the tremendous number of features (attributes) makes the task more tiresome and complex. Feature Selection (FS) technique is essential for overwhelming accuracy, time and spatial complexity when we have high dimensional data (i.e., the number of features is very large). Spam emails have been successfully filtered and detected using Machine Learning (ML) methods by various researchers nowadays. This work proposes a hybrid binary Metaheuristic Algorithm (MA) based Feature Selection (FS) approach for classifying email spam. The proposed FS approach is based upon two MA, i.e., Bat Algorithm (BA) with Grey Wolf Optimization(GWO). A novel concept of bat momentum has been introduced here, replacing the previous bat velocity. Two quantity, i.e., velocity and momentum, has an entirely different effect on the particle (i.e. bats). But they always follow the exact directions for both of them. To provide the best possible set of features for the FS process, the proposed approach uses an amalgamation technique to reach both the global and local optimum solution. To get the global optimum solution, a new momentum-based equation has been added to the BA, substituting the velocity equation from the prior BA. The GWO property has been added to the momentum-based equation mentioned above to improve the FS process search capabilities. Here a novel concept convergence timer has been introduced, which can eliminate the convergence issue in the iterative algorithm if it arises. A novel GWO based lévy flight update has been introduced here to produce the local optimum solution. We have evaluated our proposed method on two benchmark spam corpora ( Spambase , SpamAssassin ) having different significant properties. The proposed FS approach has been tested on various classification and clustering algorithms to check the robustness and how the model will behave on unknown data. After comparing multiple state-of-the-art and existing approaches, the proposed method is superior in boosting classification accuracy while minimizing the features in the feature set for misclassifying legitimate emails as spam.
Author Dhal, Pradip
Azad, Chandrashekhar
Author_xml – sequence: 1
  givenname: Pradip
  orcidid: 0000-0003-2097-6601
  surname: Dhal
  fullname: Dhal, Pradip
  email: pradip1780@gmail.com
  organization: Department of Computer Science and Engineering, ITER, National Institute of Technology, Department of Computer Science and Engineering, Siksha ‘O’ Anusandhan (Deemed to Be University)
– sequence: 2
  givenname: Chandrashekhar
  surname: Azad
  fullname: Azad, Chandrashekhar
  organization: Department of Computer Science and Engineering, ITER, National Institute of Technology
BookMark eNp9kM1KAzEUhYNUsK2-gKuA69H8zDSTpRRthUI3isuQySRtysxkTFJKfXpjR1BcdJMbcs93c-6ZgFHnOg3ALUb3GCH2EDBGOckQoRme5XmZHS7AGBeMZowRPPpzvwKTEHYI4VlB8jEwy2PlbQ1b1-ou7lsoldKN9jLqGlYyQtlsnLdx28JDOuHifZ2eQ2q6PtrWfspoXQdl33sn1RYa52HoZQtVI0OwxqqT4BpcGtkEffNTp-Dt-el1vsxW68XL_HGVKYp5zOqq0JqRtAanjNaK87pGqC5rRXWqCiliKlYiygskDVczpXHJpay4lqWhmk7B3TA32fnY6xDFzu19l74UhFNKZoyjMqnKQaW8C8FrI5SNJ5_RS9sIjMR3qmJIVSQ74pSqOCSU_EN7b1vpj-chOkAhibuN9r-uzlBf2XyPQQ
CitedBy_id crossref_primary_10_1177_14727978251366518
crossref_primary_10_1007_s42452_024_06209_1
crossref_primary_10_1038_s41598_024_79674_8
crossref_primary_10_1038_s41598_025_01092_1
crossref_primary_10_3390_a18040222
crossref_primary_10_1007_s42484_024_00207_7
crossref_primary_10_1016_j_fss_2025_109536
crossref_primary_10_1109_TSMC_2024_3392732
crossref_primary_10_1007_s12083_024_01678_y
crossref_primary_10_1007_s00371_025_04032_2
Cites_doi 10.1016/j.engappai.2014.11.001
10.1016/j.eswa.2013.09.023
10.1016/j.eswa.2018.11.018
10.1016/j.advengsoft.2013.12.007
10.5815/ijcnis.2018.01.07
10.1007/s13042-020-01128-0
10.1016/j.asoc.2016.02.018
10.1142/S1793962320500324
10.3934/mbe.2022091
10.1016/j.renene.2017.10.075
10.1108/EL-07-2019-0181
10.1109/ACCESS.2019.2954791
10.1109/ACCESS.2019.2937021
10.1016/j.jksuci.2018.06.004
10.1016/j.heliyon.2019.e01802
10.1007/s12652-022-04335-5
10.1016/j.ipm.2011.08.002
10.1016/j.knosys.2019.104938
10.1103/PhysRevE.49.4677
10.1016/j.eswa.2011.01.174
10.1016/j.jksuci.2018.05.010
10.1109/ACCESS.2022.3204593
10.1016/j.asoc.2014.05.002
10.1016/j.compeleceng.2017.08.008
10.1007/s11042-022-13496-6
10.1016/j.asoc.2016.12.022
10.1016/j.inffus.2018.08.002
10.1109/ACCESS.2021.3105914
10.1016/j.jvcir.2022.103598
10.1177/003754970107600201
10.7551/mitpress/3927.001.0001
10.1002/sec.1412
10.1111/coin.12397
10.1016/j.engappai.2013.12.001
10.1007/978-1-4615-5689-3
10.1016/j.apacoust.2023.109279
10.1142/S0219649219500084
10.1109/ACCESS.2020.3030751
10.1016/j.eswa.2011.01.077
10.1007/978-3-319-45243-2_46
10.1016/j.future.2019.02.028
10.1016/j.eswa.2023.119643
10.1109/ACCESS.2019.2963084
10.1016/j.jocs.2018.10.002
10.1109/4235.585892
10.1007/s00521-017-3100-y
10.1016/j.asoc.2019.105954
10.1109/MAP.2011.5773566
10.1016/j.asoc.2008.05.003
10.1016/j.neucom.2011.03.034
10.1007/s13369-022-06653-4
10.19026/rjaset.7.299
10.3390/app9142931
10.1155/2018/3847951
10.1007/978-981-15-5093-5_37
10.1016/j.procs.2022.03.087
10.1007/978-3-319-74690-6_1
10.1109/ICNN.1995.488968
10.22067/cke.v2i2.81750
10.1016/B978-0-12-821986-7.00016-0
10.1007/978-3-642-12538-6_6
10.1016/j.eswa.2015.10.039
10.1155/2016/8031560
10.1016/j.neucom.2014.06.067
10.1016/B978-0-12-405163-8.00009-0
10.1155/2017/3235720
10.30880/jscdm.2020.01.02.005
10.3390/sym11070925
10.1109/AEECT.2015.7360576
10.1007/s12652-017-0621-2
10.1007/s42452-019-0394-7
10.5121/ijcsit.2011.3112
10.1155/2017/2030489
10.1016/j.eswa.2021.114639
10.1109/ACCESS.2019.2944089
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOI 10.1007/s11042-023-16448-w
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
Research Library (Alumni Edition)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global (OCUL)
Computing Database
ProQuest Research Library
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ABI/INFORM Global (Corporate)

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1573-7721
EndPage 26969
ExternalDocumentID 10_1007_s11042_023_16448_w
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3EH
3V.
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
7WY
8AO
8FE
8FG
8FL
8G5
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M2O
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
7SC
7XB
8AL
8FD
8FK
AFFHD
JQ2
L.-
L7M
L~C
L~D
MBDVC
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQUKI
Q9U
ID FETCH-LOGICAL-c319t-db5ee720239373dc99dd00d8dc3e00dc0c2fb7803950af9c6ce189aab9ea8f3e3
IEDL.DBID RSV
ISICitedReferencesCount 13
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001059026300010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1573-7721
1380-7501
IngestDate Wed Nov 05 04:11:35 EST 2025
Tue Nov 18 22:06:59 EST 2025
Sat Nov 29 06:20:34 EST 2025
Fri Feb 21 02:41:56 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Feature selection
Grey wolf optimization
Bat algorithm
Spam detection
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-db5ee720239373dc99dd00d8dc3e00dc0c2fb7803950af9c6ce189aab9ea8f3e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2097-6601
PQID 2933267908
PQPubID 54626
PageCount 41
ParticipantIDs proquest_journals_2933267908
crossref_citationtrail_10_1007_s11042_023_16448_w
crossref_primary_10_1007_s11042_023_16448_w
springer_journals_10_1007_s11042_023_16448_w
PublicationCentury 2000
PublicationDate 2024-03-01
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Multimedia tools and applications
PublicationTitleAbbrev Multimed Tools Appl
PublicationYear 2024
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Liu, Yao, Li (CR47) 2020; 87
Mitchell (CR56) 1998
Rocca, Oliveri, Massa (CR67) 2011; 53
Zamir, Khan, Mehmood, Iqbal, Akram (CR87) 2020
Ebadati, Ahmadzadeh (CR16) 2019; 18
CR39
CR37
CR36
Liu, Motoda (CR45) 1998
Abdulwahab, Noraziah, Alsewari, Salih (CR1) 2019; 7
CR33
CR76
Dada, Bassi, Chiroma, Abdulhamid, Adetunmbi, Ajibuwa (CR11) 2019; 5
CR75
CR74
Pramanik, Pramanik, Sarkar (CR65) 2023; 219
Rodrigues, Pereira, Nakamura, Costa, Yang, Souza, Papa (CR68) 2014; 41
CR72
Karim, Azam, Shanmugam, Kannoorpatti, Alazab (CR38) 2019; 7
CR70
Xie, Qin, Zhou, Zhou, Zhang, Janicki, Zhao (CR84) 2019; 186
Geem, Kim, Loganathan (CR23) 2001; 76
Shahin, Alomari, Nassif, Afyouni, Hashem, Elnagar (CR71) 2023; 205
Idris, Selamat, Thanh Nguyen, Omatu, Krejcar, Kuca, Penhaker (CR31) 2015; 39
CR2
CR4
CR3
Dorigo, Gambardella (CR15) 1997; 1
CR7
CR49
CR44
CR42
CR86
CR41
CR85
Vidyadhari, Sandhya, Premchand (CR80) 2020; 11
Heidari, Mirjalili, Faris, Aljarah, Mafarja, Chen (CR27) 2019; 97
CR82
Dhal, Azad (CR13) 2022
Bahassine, Madani, Al-Sarem, Kissi (CR8) 2020; 32
Mantegna (CR51) 1994; 49
Mirjalili, Mirjalili, Lewis (CR54) 2014; 69
Wang, Li, Song, Wei, Li (CR83) 2011; 38
Dinkar, Deep (CR14) 2018; 29
Feng, Guo, Jing, Hao (CR22) 2012; 48
CR18
CR17
Rafat, Xin, Javed, Jalil, Ahmad (CR66) 2022; 19
Sahoo, Chandra (CR69) 2017; 52
Larabi Marie-Sainte, Alalyani (CR43) 2020; 32
CR59
CR12
Tang, Dai, Xiang (CR77) 2019; 120
Igawa, Ohashi (CR32) 2009; 9
Lopes, Cortez, Sousa, Rocha, Rio (CR48) 2011; 38
CR55
CR10
Vidyadhari, Sandhya, Premchand (CR81) 2020; 11
CR52
Liu, Yan, Lu (CR46) 2020; 8
CR50
Taylor, Sochima (CR78) 2020; 6
Niu, Wang, Zhang, Du (CR60) 2018; 118
Idris, Selamat, Omatu (CR30) 2014; 28
Mohammadzadeh, Gharehchopogh (CR58) 2021; 37
Aslam, Kolekar (CR5) 2022; 81
Mohammad (CR57) 2020; 47
Mirjalili, Mirjalili, Lewis (CR53) 2014; 69
Pare, Bhandari, Kumar, Singh (CR64) 2018; 70
Shuaib Bobi, Osho, Idris, Alhassan, Abdulhamid (CR73) 2018; 1
Olatunji (CR61) 2019; 31
Bahassine, Madani, Al-Sarem, Kissi (CR9) 2020; 32
Kaya, Ertugrul (CR40) 2016; 9
CR28
Idris, Selamat (CR29) 2014; 22
Jensi, Jiji (CR34) 2016; 43
Ghaleb, Mohamad, Ghanem, Nasser, Ghetas, Abdullahi, Saleh, Arshad, Omolara, Abiodun (CR25) 2022; 10
Ghaleb, Mohamad, Fadzli, Ghanem (CR24) 2021; 9
Faris, Aljarah, Al-Shboul, Nguyen, Iliadis, Manolopoulos, Trawiński (CR19) 2016
CR21
Gibson, Issac, Zhang, Jacob (CR26) 2020; 8
Verma, Saini, Saini (CR79) 2020
CR63
Aslam, Rai, Kolekar (CR6) 2022; 87
Faris, Al-Zoubi, Heidari, Aljarah, Mafarja, Hassonah, Fujita (CR20) 2019; 48
Kabir, Shahjahan, Murase (CR35) 2011; 74
Oludare, Stephen, Ayodele, Temitayo (CR62) 2014; 3
P Dhal (16448_CR13) 2022
16448_CR3
O Oludare (16448_CR62) 2014; 3
16448_CR4
16448_CR7
SK Dinkar (16448_CR14) 2018; 29
16448_CR39
SAA Ghaleb (16448_CR24) 2021; 9
OME Ebadati (16448_CR16) 2019; 18
S Gibson (16448_CR26) 2020; 8
H Liu (16448_CR45) 1998
16448_CR2
S Mirjalili (16448_CR54) 2014; 69
A Karim (16448_CR38) 2019; 7
16448_CR42
16448_CR86
16448_CR41
16448_CR85
H Faris (16448_CR19) 2016
16448_CR44
D Rodrigues (16448_CR68) 2014; 41
SAA Ghaleb (16448_CR25) 2022; 10
MM Kabir (16448_CR35) 2011; 74
16448_CR82
N Aslam (16448_CR6) 2022; 87
H Mohammadzadeh (16448_CR58) 2021; 37
ZW Geem (16448_CR23) 2001; 76
I Idris (16448_CR30) 2014; 28
H Faris (16448_CR20) 2019; 48
AK Verma (16448_CR79) 2020
16448_CR28
S Wang (16448_CR83) 2011; 38
16448_CR75
N Aslam (16448_CR5) 2022; 81
16448_CR74
O Taylor (16448_CR78) 2020; 6
16448_CR33
S Larabi Marie-Sainte (16448_CR43) 2020; 32
16448_CR76
S Mirjalili (16448_CR53) 2014; 69
16448_CR37
16448_CR36
C Vidyadhari (16448_CR81) 2020; 11
M Dorigo (16448_CR15) 1997; 1
16448_CR70
S Bahassine (16448_CR8) 2020; 32
16448_CR72
S Bahassine (16448_CR9) 2020; 32
M Shuaib Bobi (16448_CR73) 2018; 1
X Xie (16448_CR84) 2019; 186
16448_CR17
16448_CR18
I Idris (16448_CR31) 2015; 39
F Liu (16448_CR46) 2020; 8
AA Heidari (16448_CR27) 2019; 97
P Rocca (16448_CR67) 2011; 53
T Niu (16448_CR60) 2018; 118
16448_CR63
16448_CR21
G Feng (16448_CR22) 2012; 48
Y Kaya (16448_CR40) 2016; 9
I Shahin (16448_CR71) 2023; 205
K Igawa (16448_CR32) 2009; 9
HA Abdulwahab (16448_CR1) 2019; 7
X Tang (16448_CR77) 2019; 120
A Zamir (16448_CR87) 2020
S Pare (16448_CR64) 2018; 70
C Vidyadhari (16448_CR80) 2020; 11
RMA Mohammad (16448_CR57) 2020; 47
KF Rafat (16448_CR66) 2022; 19
EG Dada (16448_CR11) 2019; 5
A Sahoo (16448_CR69) 2017; 52
R Jensi (16448_CR34) 2016; 43
SO Olatunji (16448_CR61) 2019; 31
16448_CR49
R Pramanik (16448_CR65) 2023; 219
RN Mantegna (16448_CR51) 1994; 49
16448_CR52
16448_CR55
16448_CR10
M Mitchell (16448_CR56) 1998
16448_CR12
M Liu (16448_CR47) 2020; 87
I Idris (16448_CR29) 2014; 22
16448_CR59
C Lopes (16448_CR48) 2011; 38
16448_CR50
References_xml – volume: 39
  start-page: 33
  year: 2015
  end-page: 44
  ident: CR31
  article-title: A combined negative selection algorithm-particle swarm optimization for an email spam detection system
  publication-title: Eng Appl Art Intell
  doi: 10.1016/j.engappai.2014.11.001
– ident: CR70
– volume: 41
  start-page: 2250
  issue: 5
  year: 2014
  end-page: 2258
  ident: CR68
  article-title: A wrapper approach for feature selection based on bat algorithm and optimum-path forest
  publication-title: Exp Syst Appl
  doi: 10.1016/j.eswa.2013.09.023
– volume: 120
  start-page: 207
  year: 2019
  end-page: 216
  ident: CR77
  article-title: Feature selection based on feature interactions with application to text categorization
  publication-title: Exp Syst Appl
  doi: 10.1016/j.eswa.2018.11.018
– volume: 69
  start-page: 46
  year: 2014
  end-page: 61
  ident: CR53
  publication-title: Grey wolf optimizer. Adv Eng Softw
  doi: 10.1016/j.advengsoft.2013.12.007
– volume: 1
  start-page: 60
  year: 2018
  end-page: 67
  ident: CR73
  article-title: Comparative analysis of classification algorithms for email spam detection
  publication-title: Int J Comput Netw Inf Sec (IJCNIS)
  doi: 10.5815/ijcnis.2018.01.07
– ident: CR49
– ident: CR74
– year: 2020
  ident: CR79
  article-title: A new bat optimization algorithm based feature selection method for electrocardiogram heartbeat classification using empirical wavelet transform and fisher ratio
  publication-title: Int J Mach Learn Cybern
  doi: 10.1007/s13042-020-01128-0
– ident: CR4
– volume: 43
  start-page: 248
  year: 2016
  end-page: 261
  ident: CR34
  article-title: An enhanced particle swarm optimization with levy flight for global optimization
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2016.02.018
– ident: CR39
– volume: 11
  start-page: 2050032
  issue: 04
  year: 2020
  ident: CR80
  article-title: Bat-grey wolf optimizer and kernel mapping for automatic incremental clustering
  publication-title: Int J Model Simul Sci Comput
  doi: 10.1142/S1793962320500324
– ident: CR12
– volume: 19
  start-page: 1926
  issue: 2
  year: 2022
  end-page: 1943
  ident: CR66
  article-title: Evading obscure communication from spam emails
  publication-title: Math Biosci Eng
  doi: 10.3934/mbe.2022091
– volume: 118
  start-page: 213
  year: 2018
  end-page: 229
  ident: CR60
  article-title: Multi-step-ahead wind speed forecasting based on optimal feature selection and a modified bat algorithm with the cognition strategy
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2017.10.075
– year: 2020
  ident: CR87
  article-title: A feature-centric spam email detection model using diverse supervised machine learning algorithms
  publication-title: The Electronic Library ahead-of-print
  doi: 10.1108/EL-07-2019-0181
– volume: 7
  start-page: 168261
  year: 2019
  end-page: 168295
  ident: CR38
  article-title: A comprehensive survey for intelligent spam email detection
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2954791
– volume: 7
  start-page: 142085
  year: 2019
  end-page: 142096
  ident: CR1
  article-title: An enhanced version of black hole algorithm via levy flight for optimization and data clustering problems
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2937021
– volume: 32
  start-page: 320
  issue: 3
  year: 2020
  end-page: 328
  ident: CR43
  article-title: Firefly algorithm based feature selection for arabic text classification
  publication-title: J King Saud Univ - Comput Inf Sci
  doi: 10.1016/j.jksuci.2018.06.004
– volume: 5
  issue: 6
  year: 2019
  ident: CR11
  article-title: Machine learning for email spam filtering: review, approaches and open research problems
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2019.e01802
– ident: CR42
– ident: CR21
– year: 2022
  ident: CR13
  article-title: A lightweight filter based feature selection approach for multi-label text classification
  publication-title: J Ambient Intell Human Comput
  doi: 10.1007/s12652-022-04335-5
– ident: CR75
– volume: 48
  start-page: 283
  issue: 2
  year: 2012
  end-page: 302
  ident: CR22
  article-title: A bayesian feature selection paradigm for text classification
  publication-title: Inf Process Manag
  doi: 10.1016/j.ipm.2011.08.002
– ident: CR50
– volume: 186
  year: 2019
  ident: CR84
  article-title: A novel test-cost-sensitive attribute reduction approach using the binary bat algorithm
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2019.104938
– volume: 49
  start-page: 4677
  year: 1994
  end-page: 4683
  ident: CR51
  article-title: Fast, accurate algorithm for numerical simulation of lévy stable stochastic processes
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.49.4677
– ident: CR36
– ident: CR85
– volume: 38
  start-page: 9365
  issue: 8
  year: 2011
  end-page: 9372
  ident: CR48
  article-title: Symbiotic filtering for spam email detection
  publication-title: Exp Syst Appl
  doi: 10.1016/j.eswa.2011.01.174
– volume: 32
  start-page: 225
  issue: 2
  year: 2020
  end-page: 231
  ident: CR8
  article-title: Feature selection using an improved chi-square for arabic text classification
  publication-title: J King Saud Univ - Comput Inf Sci
  doi: 10.1016/j.jksuci.2018.05.010
– volume: 10
  start-page: 98475
  year: 2022
  end-page: 98489
  ident: CR25
  article-title: Feature selection by multiobjective optimization: Application to spam detection system by neural networks and grasshopper optimization algorithm
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3204593
– volume: 22
  start-page: 11
  year: 2014
  end-page: 27
  ident: CR29
  article-title: Improved email spam detection model with negative selection algorithm and particle swarm optimization
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2014.05.002
– volume: 70
  start-page: 476
  year: 2018
  end-page: 495
  ident: CR64
  article-title: A new technique for multilevel color image thresholding based on modified fuzzy entropy and lévy flight firefly algorithm
  publication-title: Comput Electr Eng
  doi: 10.1016/j.compeleceng.2017.08.008
– volume: 81
  start-page: 1
  year: 2022
  end-page: 26
  ident: CR5
  article-title: Unsupervised anomalous event detection in videos using spatio-temporal inter-fused autoencoder
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-022-13496-6
– volume: 3
  start-page: 7
  year: 2014
  ident: CR62
  article-title: An optimized feature selection technique for email classification
  publication-title: Int J Sci Technol Res
– volume: 52
  start-page: 64
  year: 2017
  end-page: 80
  ident: CR69
  article-title: Multi-objective grey wolf optimizer for improved cervix lesion classification
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2016.12.022
– volume: 48
  start-page: 67
  year: 2019
  end-page: 83
  ident: CR20
  article-title: An intelligent system for spam detection and identification of the most relevant features based on evolutionary random weight networks
  publication-title: Inf Fusion
  doi: 10.1016/j.inffus.2018.08.002
– ident: CR18
– ident: CR72
– volume: 9
  start-page: 116768
  year: 2021
  end-page: 116813
  ident: CR24
  article-title: Training neural networks by enhance grasshopper optimization algorithm for spam detection system
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3105914
– volume: 87
  year: 2022
  ident: CR6
  article-title: A3n: Attention-based adversarial autoencoder network for detecting anomalies in video sequence
  publication-title: J Vis Commun Image Represent
  doi: 10.1016/j.jvcir.2022.103598
– volume: 76
  start-page: 60
  issue: 2
  year: 2001
  end-page: 68
  ident: CR23
  article-title: A new heuristic optimization algorithm: Harmony search
  publication-title: SIMULATION
  doi: 10.1177/003754970107600201
– year: 1998
  ident: CR56
  publication-title: An Introduction to Genetic Algorithms
  doi: 10.7551/mitpress/3927.001.0001
– ident: CR2
– ident: CR37
– volume: 9
  start-page: 1216
  issue: 10
  year: 2016
  end-page: 1225
  ident: CR40
  article-title: A novel approach for spam email detection based on shifted binary patterns
  publication-title: Security and Communication Networks
  doi: 10.1002/sec.1412
– volume: 37
  start-page: 176
  issue: 1
  year: 2021
  end-page: 209
  ident: CR58
  article-title: A novel hybrid whale optimization algorithm with flower pollination algorithm for feature selection: Case study email spam detection
  publication-title: Comput Intell
  doi: 10.1111/coin.12397
– volume: 11
  start-page: 2050032
  issue: 04
  year: 2020
  ident: CR81
  article-title: Bat-grey wolf optimizer and kernel mapping for automatic incremental clustering
  publication-title: Int J Model Simul Sci Comput
  doi: 10.1142/S1793962320500324
– ident: CR10
– volume: 28
  start-page: 97
  year: 2014
  end-page: 110
  ident: CR30
  article-title: Hybrid email spam detection model with negative selection algorithm and differential evolution
  publication-title: Eng Appl Art Intell
  doi: 10.1016/j.engappai.2013.12.001
– ident: CR33
– ident: CR82
– year: 1998
  ident: CR45
  publication-title: Feature Selection for Knowledge Discovery and Data Mining
  doi: 10.1007/978-1-4615-5689-3
– ident: CR86
– ident: CR63
– volume: 205
  year: 2023
  ident: CR71
  article-title: An efficient feature selection method for arabic and english speech emotion recognition using grey wolf optimizer
  publication-title: Appl Acoust
  doi: 10.1016/j.apacoust.2023.109279
– volume: 18
  start-page: 1950008
  issue: 01
  year: 2019
  ident: CR16
  article-title: Classification spam email with elimination of unsuitable features with hybrid of ga-naive bayes
  publication-title: J Inf Knowl Manag
  doi: 10.1142/S0219649219500084
– volume: 8
  start-page: 187914
  year: 2020
  end-page: 187932
  ident: CR26
  article-title: Detecting spam email with machine learning optimized with bio-inspired metaheuristic algorithms
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3030751
– volume: 38
  start-page: 8696
  issue: 7
  year: 2011
  end-page: 8702
  ident: CR83
  article-title: A feature selection method based on improved fisher’s discriminant ratio for text sentiment classification
  publication-title: Exp Syst Appl
  doi: 10.1016/j.eswa.2011.01.077
– volume: 47
  start-page: 187
  year: 2020
  end-page: 198
  ident: CR57
  article-title: An improved multi-class classification algorithm based on association classification approach and its application to spam emails
  publication-title: IAENG Int J Comput Sci
– volume: 6
  start-page: 1
  year: 2020
  end-page: 11
  ident: CR78
  article-title: A model to detect spam email using support vector classifier and random forest classifier
  publication-title: Int J Comput Sci Math Theo
– start-page: 498
  year: 2016
  end-page: 508
  ident: CR19
  article-title: A hybrid approach based on particle swarm optimization and random forests for e-mail spam filtering
  publication-title: Computational Collective Intelligence
  doi: 10.1007/978-3-319-45243-2_46
– volume: 97
  start-page: 849
  year: 2019
  end-page: 872
  ident: CR27
  article-title: Harris hawks optimization: Algorithm and applications
  publication-title: Future Gener Comput Syst
  doi: 10.1016/j.future.2019.02.028
– ident: CR44
– volume: 219
  year: 2023
  ident: CR65
  article-title: Breast cancer detection in thermograms using a hybrid of ga and gwo based deep feature selection method
  publication-title: Exp Syst Appl
  doi: 10.1016/j.eswa.2023.119643
– ident: CR3
– volume: 8
  start-page: 4244
  year: 2020
  end-page: 4249
  ident: CR46
  article-title: Feature selection for image steganalysis using binary bat algorithm
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2963084
– volume: 32
  start-page: 225
  year: 2020
  end-page: 231
  ident: CR9
  article-title: Feature selection using an improved chi-square for arabic text classification
  publication-title: J King Saud Univ - Comput Inf Sci
– ident: CR52
– ident: CR17
– volume: 29
  start-page: 119
  year: 2018
  end-page: 141
  ident: CR14
  article-title: An efficient opposition based lévy flight antlion optimizer for optimization problems
  publication-title: J Computational Science
  doi: 10.1016/j.jocs.2018.10.002
– ident: CR55
– volume: 1
  start-page: 53
  issue: 1
  year: 1997
  end-page: 66
  ident: CR15
  article-title: Ant colony system: a cooperative learning approach to the traveling salesman problem
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/4235.585892
– volume: 31
  start-page: 691
  issue: 3
  year: 2019
  end-page: 699
  ident: CR61
  article-title: Improved email spam detection model based on support vector machines
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-017-3100-y
– ident: CR7
– ident: CR59
– ident: CR76
– volume: 87
  year: 2020
  ident: CR47
  article-title: Hybrid whale optimization algorithm enhanced with lévy flight and differential evolution for job shop scheduling problems
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2019.105954
– ident: CR28
– ident: CR41
– volume: 69
  start-page: 46
  year: 2014
  end-page: 61
  ident: CR54
  publication-title: Grey wolf optimizer. Adv Eng Softw
  doi: 10.1016/j.advengsoft.2013.12.007
– volume: 53
  start-page: 38
  issue: 1
  year: 2011
  end-page: 49
  ident: CR67
  article-title: Differential evolution as applied to electromagnetics
  publication-title: IEEE Antennas and Propag Mag
  doi: 10.1109/MAP.2011.5773566
– volume: 9
  start-page: 431
  issue: 1
  year: 2009
  end-page: 438
  ident: CR32
  article-title: A negative selection algorithm for classification and reduction of the noise effect
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2008.05.003
– volume: 74
  start-page: 2914
  issue: 17
  year: 2011
  end-page: 2928
  ident: CR35
  article-title: A new local search based hybrid genetic algorithm for feature selection
  publication-title: Neurocomput
  doi: 10.1016/j.neucom.2011.03.034
– volume: 5
  issue: 6
  year: 2019
  ident: 16448_CR11
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2019.e01802
– volume: 87
  year: 2022
  ident: 16448_CR6
  publication-title: J Vis Commun Image Represent
  doi: 10.1016/j.jvcir.2022.103598
– volume: 38
  start-page: 8696
  issue: 7
  year: 2011
  ident: 16448_CR83
  publication-title: Exp Syst Appl
  doi: 10.1016/j.eswa.2011.01.077
– volume: 69
  start-page: 46
  year: 2014
  ident: 16448_CR53
  publication-title: Grey wolf optimizer. Adv Eng Softw
  doi: 10.1016/j.advengsoft.2013.12.007
– volume: 219
  year: 2023
  ident: 16448_CR65
  publication-title: Exp Syst Appl
  doi: 10.1016/j.eswa.2023.119643
– volume: 81
  start-page: 1
  year: 2022
  ident: 16448_CR5
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-022-13496-6
– volume: 74
  start-page: 2914
  issue: 17
  year: 2011
  ident: 16448_CR35
  publication-title: Neurocomput
  doi: 10.1016/j.neucom.2011.03.034
– volume: 186
  year: 2019
  ident: 16448_CR84
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2019.104938
– ident: 16448_CR2
  doi: 10.1007/s13369-022-06653-4
– volume: 32
  start-page: 225
  year: 2020
  ident: 16448_CR9
  publication-title: J King Saud Univ - Comput Inf Sci
– volume: 38
  start-page: 9365
  issue: 8
  year: 2011
  ident: 16448_CR48
  publication-title: Exp Syst Appl
  doi: 10.1016/j.eswa.2011.01.174
– volume-title: An Introduction to Genetic Algorithms
  year: 1998
  ident: 16448_CR56
  doi: 10.7551/mitpress/3927.001.0001
– ident: 16448_CR49
– volume: 1
  start-page: 60
  year: 2018
  ident: 16448_CR73
  publication-title: Int J Comput Netw Inf Sec (IJCNIS)
  doi: 10.5815/ijcnis.2018.01.07
– volume: 37
  start-page: 176
  issue: 1
  year: 2021
  ident: 16448_CR58
  publication-title: Comput Intell
  doi: 10.1111/coin.12397
– start-page: 498
  volume-title: Computational Collective Intelligence
  year: 2016
  ident: 16448_CR19
  doi: 10.1007/978-3-319-45243-2_46
– volume: 43
  start-page: 248
  year: 2016
  ident: 16448_CR34
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2016.02.018
– volume: 69
  start-page: 46
  year: 2014
  ident: 16448_CR54
  publication-title: Grey wolf optimizer. Adv Eng Softw
  doi: 10.1016/j.advengsoft.2013.12.007
– ident: 16448_CR18
  doi: 10.19026/rjaset.7.299
– volume: 18
  start-page: 1950008
  issue: 01
  year: 2019
  ident: 16448_CR16
  publication-title: J Inf Knowl Manag
  doi: 10.1142/S0219649219500084
– ident: 16448_CR36
  doi: 10.3390/app9142931
– ident: 16448_CR50
  doi: 10.1155/2018/3847951
– ident: 16448_CR12
  doi: 10.1007/978-981-15-5093-5_37
– volume: 10
  start-page: 98475
  year: 2022
  ident: 16448_CR25
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3204593
– ident: 16448_CR52
  doi: 10.1016/j.procs.2022.03.087
– ident: 16448_CR17
  doi: 10.1007/978-3-319-74690-6_1
– ident: 16448_CR41
  doi: 10.1109/ICNN.1995.488968
– volume: 6
  start-page: 1
  year: 2020
  ident: 16448_CR78
  publication-title: Int J Comput Sci Math Theo
– ident: 16448_CR63
– ident: 16448_CR76
  doi: 10.22067/cke.v2i2.81750
– volume: 48
  start-page: 67
  year: 2019
  ident: 16448_CR20
  publication-title: Inf Fusion
  doi: 10.1016/j.inffus.2018.08.002
– volume: 47
  start-page: 187
  year: 2020
  ident: 16448_CR57
  publication-title: IAENG Int J Comput Sci
– ident: 16448_CR86
  doi: 10.1016/B978-0-12-821986-7.00016-0
– volume: 49
  start-page: 4677
  year: 1994
  ident: 16448_CR51
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.49.4677
– ident: 16448_CR85
  doi: 10.1007/978-3-642-12538-6_6
– volume: 32
  start-page: 225
  issue: 2
  year: 2020
  ident: 16448_CR8
  publication-title: J King Saud Univ - Comput Inf Sci
  doi: 10.1016/j.jksuci.2018.05.010
– volume: 120
  start-page: 207
  year: 2019
  ident: 16448_CR77
  publication-title: Exp Syst Appl
  doi: 10.1016/j.eswa.2018.11.018
– volume: 29
  start-page: 119
  year: 2018
  ident: 16448_CR14
  publication-title: J Computational Science
  doi: 10.1016/j.jocs.2018.10.002
– volume: 48
  start-page: 283
  issue: 2
  year: 2012
  ident: 16448_CR22
  publication-title: Inf Process Manag
  doi: 10.1016/j.ipm.2011.08.002
– volume: 8
  start-page: 4244
  year: 2020
  ident: 16448_CR46
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2963084
– ident: 16448_CR55
  doi: 10.1016/j.eswa.2015.10.039
– volume: 11
  start-page: 2050032
  issue: 04
  year: 2020
  ident: 16448_CR81
  publication-title: Int J Model Simul Sci Comput
  doi: 10.1142/S1793962320500324
– volume: 32
  start-page: 320
  issue: 3
  year: 2020
  ident: 16448_CR43
  publication-title: J King Saud Univ - Comput Inf Sci
  doi: 10.1016/j.jksuci.2018.06.004
– ident: 16448_CR72
  doi: 10.1155/2016/8031560
– volume: 118
  start-page: 213
  year: 2018
  ident: 16448_CR60
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2017.10.075
– volume: 28
  start-page: 97
  year: 2014
  ident: 16448_CR30
  publication-title: Eng Appl Art Intell
  doi: 10.1016/j.engappai.2013.12.001
– ident: 16448_CR39
  doi: 10.1016/j.neucom.2014.06.067
– volume: 205
  year: 2023
  ident: 16448_CR71
  publication-title: Appl Acoust
  doi: 10.1016/j.apacoust.2023.109279
– volume: 1
  start-page: 53
  issue: 1
  year: 1997
  ident: 16448_CR15
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/4235.585892
– ident: 16448_CR59
  doi: 10.1016/B978-0-12-405163-8.00009-0
– volume: 9
  start-page: 116768
  year: 2021
  ident: 16448_CR24
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3105914
– volume: 7
  start-page: 142085
  year: 2019
  ident: 16448_CR1
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2937021
– ident: 16448_CR42
  doi: 10.1109/ICNN.1995.488968
– ident: 16448_CR37
– year: 2020
  ident: 16448_CR87
  publication-title: The Electronic Library ahead-of-print
  doi: 10.1108/EL-07-2019-0181
– ident: 16448_CR4
– volume: 87
  year: 2020
  ident: 16448_CR47
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2019.105954
– ident: 16448_CR28
  doi: 10.1155/2017/3235720
– ident: 16448_CR7
  doi: 10.30880/jscdm.2020.01.02.005
– ident: 16448_CR44
  doi: 10.3390/sym11070925
– ident: 16448_CR21
  doi: 10.1109/AEECT.2015.7360576
– volume-title: Feature Selection for Knowledge Discovery and Data Mining
  year: 1998
  ident: 16448_CR45
  doi: 10.1007/978-1-4615-5689-3
– volume: 3
  start-page: 7
  year: 2014
  ident: 16448_CR62
  publication-title: Int J Sci Technol Res
– ident: 16448_CR10
  doi: 10.1007/s12652-017-0621-2
– ident: 16448_CR74
  doi: 10.1007/s42452-019-0394-7
– year: 2020
  ident: 16448_CR79
  publication-title: Int J Mach Learn Cybern
  doi: 10.1007/s13042-020-01128-0
– volume: 39
  start-page: 33
  year: 2015
  ident: 16448_CR31
  publication-title: Eng Appl Art Intell
  doi: 10.1016/j.engappai.2014.11.001
– ident: 16448_CR33
– volume: 53
  start-page: 38
  issue: 1
  year: 2011
  ident: 16448_CR67
  publication-title: IEEE Antennas and Propag Mag
  doi: 10.1109/MAP.2011.5773566
– ident: 16448_CR82
  doi: 10.5121/ijcsit.2011.3112
– volume: 52
  start-page: 64
  year: 2017
  ident: 16448_CR69
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2016.12.022
– ident: 16448_CR75
  doi: 10.1155/2017/2030489
– volume: 9
  start-page: 1216
  issue: 10
  year: 2016
  ident: 16448_CR40
  publication-title: Security and Communication Networks
  doi: 10.1002/sec.1412
– volume: 76
  start-page: 60
  issue: 2
  year: 2001
  ident: 16448_CR23
  publication-title: SIMULATION
  doi: 10.1177/003754970107600201
– ident: 16448_CR70
  doi: 10.1016/j.eswa.2021.114639
– ident: 16448_CR3
  doi: 10.1109/ACCESS.2019.2944089
– volume: 7
  start-page: 168261
  year: 2019
  ident: 16448_CR38
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2954791
– volume: 8
  start-page: 187914
  year: 2020
  ident: 16448_CR26
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3030751
– volume: 11
  start-page: 2050032
  issue: 04
  year: 2020
  ident: 16448_CR80
  publication-title: Int J Model Simul Sci Comput
  doi: 10.1142/S1793962320500324
– volume: 9
  start-page: 431
  issue: 1
  year: 2009
  ident: 16448_CR32
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2008.05.003
– volume: 22
  start-page: 11
  year: 2014
  ident: 16448_CR29
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2014.05.002
– volume: 31
  start-page: 691
  issue: 3
  year: 2019
  ident: 16448_CR61
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-017-3100-y
– volume: 70
  start-page: 476
  year: 2018
  ident: 16448_CR64
  publication-title: Comput Electr Eng
  doi: 10.1016/j.compeleceng.2017.08.008
– volume: 41
  start-page: 2250
  issue: 5
  year: 2014
  ident: 16448_CR68
  publication-title: Exp Syst Appl
  doi: 10.1016/j.eswa.2013.09.023
– volume: 97
  start-page: 849
  year: 2019
  ident: 16448_CR27
  publication-title: Future Gener Comput Syst
  doi: 10.1016/j.future.2019.02.028
– year: 2022
  ident: 16448_CR13
  publication-title: J Ambient Intell Human Comput
  doi: 10.1007/s12652-022-04335-5
– volume: 19
  start-page: 1926
  issue: 2
  year: 2022
  ident: 16448_CR66
  publication-title: Math Biosci Eng
  doi: 10.3934/mbe.2022091
SSID ssj0016524
Score 2.4164865
Snippet Spam emails have become more prevalent, necessitating the development of more effective and reliable anti-spam filters. Internet users face security threats,...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 26929
SubjectTerms Algorithms
Classification
Clustering
Complexity
Computer Communication Networks
Computer Science
Convergence
Data Structures and Information Theory
Feature selection
Heuristic methods
Iterative algorithms
Iterative methods
Machine learning
Momentum
Multimedia Information Systems
Optimization
Spamming
Special Purpose and Application-Based Systems
SummonAdditionalLinks – databaseName: ABI/INFORM Global (OCUL)
  dbid: M0C
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8QwDLbgYICBN-J4KQMbRKRX2iYTQiceC48BBFuVOgkg0TvgCoh_j9NLOUCChalD0zSqY_urY38G2Co0GhmblFtbk2obRzqHkjvCElIZnWKBdbOJ7OxM3tyoixBwG4S0ysYm1oba9NHHyHfJLRHSyJSQ-49P3HeN8qeroYXGOEx4ZONT-k5F9_MUIU1CU1spOHnGKBTNDEvnIl-YQh6LR_4Xhb99d0wjtPnjgLT2O0ez_13xHMwExMkOhltkHsZsbwFmm24OLCj3Akx_oSZcBHfy7mu5WOkZGqqXkmlE8lCeWMKwQldMP9zSy6q7kvlQLju-PmfeIxrWJyNUhupO1lCWM8LGjIxXydDDdZ-fVA9Ygqujw8vuCQ89GTiSslbcFIm1WadmTstig0oZI4SRBmNLVxTYcUUmRawSoZ3CFC3JXOtCWS1dbONlaPX6PbsCTDgkuKEzmapkT4ukEBE6I3WGLo46UdGGqBFIjoGw3PfNeMhHVMteiDktJq-FmL-1YfvzmcchXcefo9cbyeVBdQf5SGxt2GlkP7r9-2yrf8-2BlP02faG-Wvr0KqeX-wGTOJrdT943qw37gfgbPXV
  priority: 102
  providerName: ProQuest
Title Hybrid momentum accelerated bat algorithm with GWO based optimization approach for spam classification
URI https://link.springer.com/article/10.1007/s11042-023-16448-w
https://www.proquest.com/docview/2933267908
Volume 83
WOSCitedRecordID wos001059026300010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ABI/INFORM Collection
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1573-7721
  databaseCode: 7WY
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/abicomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ABI/INFORM Global (OCUL)
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1573-7721
  databaseCode: M0C
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/abiglobal
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1573-7721
  databaseCode: K7-
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest advanced technologies & aerospace journals
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1573-7721
  databaseCode: P5Z
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1573-7721
  databaseCode: BENPR
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest research library
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1573-7721
  databaseCode: M2O
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1573-7721
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7xOsAByksshZUP3CCSk2xi-9giKBLqsoK2UC6RM7ZhJbKLdkNR_33H2YRtEVSCi6Mo48jyeGa-xJ5vAPZyjUbGJg2srUi1jSObQxk4whJSGZ1ijlWxCdHtyqsr1auTwsbNafdmS7Ly1NNkt9CnklCMCUL_URE8zsI8hTvpCzacX_x42jtIk6hTp8e83O_fEDTFlc-2QqsIc7zyvrF9gOUaUbJPkyWwCjN2sAYrTbUGVhvvGiz9RT24Du7kt8_VYoVnYCgfCqYRKQJ54gjDcl0yfXczHPXL24L5X7Xsy-UZ8xHPsCE5maLO3mQNJTkj7MvIORUMPRz3548qgQ34fnz07fAkqGsuBEjGWAYmT6wVUcWMJmKDShnDuZEGY0tX5Bi5XEgeq4RrpzBFSzrVOldWSxfbeBPmBsOB3QLGHRKc0EKmKulonuQ8RGekFujiMArzFoSNGjKsCcl9XYy7bEql7Kc1o8Fk1bRmjy3Yf-pzP6Hj-K_0TqPdrDbNcUb4hiCrUFy24KDR5vTx62_bfpv4R1ikaexMzqvtwFw5erC7sIC_yv541IZZcfmzDfOfj7q9c7o7FQG1X_mhb6MzanvJdbta2H8AYS_xDA
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VFgl6oFCK2NKCD3ACCyfZxPYBVVUfbLVl4VBEb8EZ2wWp2S3dlFX_FL-RcR5dqERvPXDKIbZjO988_JhvAF4WBq1KbMadq0m1rSeZQ8U9-RJKW5NhgXWyCTkaqeNj_WkBfnWxMOFaZacTa0VtJxj2yN-SWSJPQ2qhts5-8JA1Kpyudik0GlgM3eWMlmzTdwe79H9fxfH-3tHOgLdZBTgS3Cpui9Q5GdfcXzKxqLW1QlhlMXH0RIGxL6QSiU6F8RozdNRrYwrtjPKJS6jdO7DUT5QMcjWU_OrUIkvbJLpKcLLEURuk04TqRSEQhr7Ko7Ak4rO_DeHcu712IFvbuf2V_22GHsKD1qNm240IPIIFN16FlS5bBWuV1yos_0G9-Bj84DLEqrEyMFBUFyUziGSBA3GGZYWpmDk9ocFV30oWtqrZ-y8fWbD4lk1IyZZt9CrrKNkZ-f6MlHPJMCxHwv2rusAafL6VsT-BxfFk7J4CEx7JnTJSZTrtG5EWIkJvlZHokyiOih5EHQBybAnZQ16Q03xOJR1Ak1Nn8ho0-awHr6_qnDV0JDeW3uiQkreqaZrPYdKDNx3W5q__3dr6za29gHuDow-H-eHBaPgM7tMU9pu7ehuwWJ1fuE24iz-r79Pz57XQMPh62xj8DT01VTs
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NT9wwEB0BRYgeSoGibgvUB3qi1joJ2TiHCiHoFgTa7gFUxCU4Y7sgkV3Khq74a_11HScO2yLBjUNPOcRxYud5PuyZNwAbuUItI93hxlSk2trSmkPJLdkSMtWqgzlWxSaSXk-enqb9Kfjd5MK4sMpGJlaCWg_R7ZG3SS2RpZGkQratD4vo73W3r39yV0HKnbQ25TRqiByauzG5b6PPB3v0rz-GYffL8e4-9xUGOBL0Sq7z2JgkrHjAkkhjmmothJYaI0NXFBjaPJEiSmOhbIodNDQCpfLUKGkjE1G_0_AiIR_ThRP247P7E4xO7AvqSsFJKwc-YadO2wtcUgy9lQfOPeLjf5XixNJ9cDhb6bzuwv88W6_hlbe02U69NBZhygyWYKGpYsG8UFuCl39RMi6D3b9zOWyscMwU5W3BFCJpZkeooVmuSqauftDgyouCuS1s9vX7N-YsAc2GJHwLn9XKGqp2Rj4BI6FdMHRuiovLqhq8gZNnGfsKzAyGA_MWmLBIZpZKJIFmS4k4FwFaLVWCNgrCIG9B0IAhQ0_U7uqFXGUTimkHoIw-JqsAlI1bsHn_zHVNU_Jk69UGNZkXWaNsApkWfGpwN7n9eG_vnu7tA8wR9LKjg97he5inGdyqQ_hWYaa8uTVrMIu_ysvRzXq1fhicPzcE_wA69F5f
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+momentum+accelerated+bat+algorithm+with+GWO+based+optimization+approach+for+spam+classification&rft.jtitle=Multimedia+tools+and+applications&rft.au=Dhal%2C+Pradip&rft.au=Azad%2C+Chandrashekhar&rft.date=2024-03-01&rft.pub=Springer+US&rft.eissn=1573-7721&rft.volume=83&rft.issue=9&rft.spage=26929&rft.epage=26969&rft_id=info:doi/10.1007%2Fs11042-023-16448-w&rft.externalDocID=10_1007_s11042_023_16448_w
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1573-7721&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1573-7721&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1573-7721&client=summon