Brain Tumor Detection and Segmentation in MR Images Using Deep Learning
Gliomas are the most infiltrative and life-threatening brain tumors with exceptionally quick development. Gliomas segmentation using computer-aided diagnosis is a challenging task, due to irregular shape and diffused boundaries of tumor with the surrounding area. Magnetic resonance imaging (MRI) is...
Uložené v:
| Vydané v: | Arabian journal for science and engineering (2011) Ročník 44; číslo 11; s. 9249 - 9261 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.11.2019
Springer Nature B.V |
| Predmet: | |
| ISSN: | 2193-567X, 1319-8025, 2191-4281 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Gliomas are the most infiltrative and life-threatening brain tumors with exceptionally quick development. Gliomas segmentation using computer-aided diagnosis is a challenging task, due to irregular shape and diffused boundaries of tumor with the surrounding area. Magnetic resonance imaging (MRI) is the most widely used method for imaging structures of interest in human brain. In this study, a deep learning-based method that uses different modalities of MRI is presented for the segmentation of brain tumor. The proposed hybrid convolutional neural network architecture uses patch-based approach and takes both local and contextual information into account, while predicting output label. The proposed network deals with over-fitting problem by utilizing dropout regularizer alongside batch normalization, whereas data imbalance problem is dealt with by using two-phase training procedure. The proposed method contains a preprocessing step, in which images are normalized and bias field corrected, a feed-forward pass through a CNN and a post-processing step, which is used to remove small false positives around the skull portion. The proposed method is validated on BRATS 2013 dataset, where it achieves scores of 0.86, 0.86 and 0.91 in terms of dice score, sensitivity and specificity for whole tumor region, improving results compared to the state-of-the-art techniques. |
|---|---|
| AbstractList | Gliomas are the most infiltrative and life-threatening brain tumors with exceptionally quick development. Gliomas segmentation using computer-aided diagnosis is a challenging task, due to irregular shape and diffused boundaries of tumor with the surrounding area. Magnetic resonance imaging (MRI) is the most widely used method for imaging structures of interest in human brain. In this study, a deep learning-based method that uses different modalities of MRI is presented for the segmentation of brain tumor. The proposed hybrid convolutional neural network architecture uses patch-based approach and takes both local and contextual information into account, while predicting output label. The proposed network deals with over-fitting problem by utilizing dropout regularizer alongside batch normalization, whereas data imbalance problem is dealt with by using two-phase training procedure. The proposed method contains a preprocessing step, in which images are normalized and bias field corrected, a feed-forward pass through a CNN and a post-processing step, which is used to remove small false positives around the skull portion. The proposed method is validated on BRATS 2013 dataset, where it achieves scores of 0.86, 0.86 and 0.91 in terms of dice score, sensitivity and specificity for whole tumor region, improving results compared to the state-of-the-art techniques. |
| Author | Hussain, Saddam Sajid, Sidra Sarwar, Amna |
| Author_xml | – sequence: 1 givenname: Sidra surname: Sajid fullname: Sajid, Sidra organization: Department of Software Engineering, University of Engineering and Technology Taxila – sequence: 2 givenname: Saddam surname: Hussain fullname: Hussain, Saddam email: saddam.hussain@cs.uol.edu.pk organization: Department of Computer Science and IT, University of Lahore – sequence: 3 givenname: Amna surname: Sarwar fullname: Sarwar, Amna organization: Department of Software Engineering, University of Engineering and Technology Taxila |
| BookMark | eNp9kEFLwzAUx4NMcM59AU8Fz9W8pG2So06dg4mgE7yFtH0plS2dSXfw25utguBhh5Dk8f-9l_zOych1Dgm5BHoNlIqbAJwXKqUQF1eFSOUJGTNQkGZMwuhw5mleiI8zMg2hLWkmucoB-JjM77xpXbLabTqf3GOPVd92LjGuTt6w2aDrzaEQM8-vyWJjGgzJe2hdE9O4TZZovIu3C3JqzTrg9HefkNXjw2r2lC5f5ovZ7TKtOKg-rUtgkpWlrGuKlAuLNq_yTBac8xqyWMvrwjJRWmWFAolAUSnOLYgKhOETcjW03frua4eh15_dzrs4UTOmcppLyWRMsSFV-S4Ej1Zvfbsx_lsD1XtlelCmozJ9UKb3kPwHVe3w-T4qWh9H-YCGOMc16P9edYT6Ac0pgQY |
| CitedBy_id | crossref_primary_10_1038_s41598_024_71893_3 crossref_primary_10_3390_jpm12020275 crossref_primary_10_4108_eetpht_9_4337 crossref_primary_10_1155_2022_1519198 crossref_primary_10_3390_s25092746 crossref_primary_10_1109_ACCESS_2024_3359418 crossref_primary_10_1038_s41598_025_06455_2 crossref_primary_10_1080_07391102_2024_2311343 crossref_primary_10_1080_21681163_2023_2189487 crossref_primary_10_1016_j_bspc_2022_104424 crossref_primary_10_7717_peerj_cs_2920 crossref_primary_10_1038_s41598_025_14901_4 crossref_primary_10_1155_2024_1622294 crossref_primary_10_3390_app12147282 crossref_primary_10_1002_cpe_7850 crossref_primary_10_1016_j_compmedimag_2024_102343 crossref_primary_10_1109_ACCESS_2024_3480271 crossref_primary_10_1002_ima_23056 crossref_primary_10_1007_s13198_025_02944_9 crossref_primary_10_3390_sym12081256 crossref_primary_10_1016_j_jneumeth_2025_110424 crossref_primary_10_1002_mp_14517 crossref_primary_10_1016_j_ultras_2023_107017 crossref_primary_10_1016_j_compeleceng_2022_107960 crossref_primary_10_3390_a16040176 crossref_primary_10_1016_j_bspc_2024_106618 crossref_primary_10_3390_bioengineering11030266 crossref_primary_10_1007_s11831_025_10238_3 crossref_primary_10_1007_s11042_022_12162_1 crossref_primary_10_1007_s40747_021_00318_9 crossref_primary_10_21518_ms2025_116 crossref_primary_10_1007_s00530_022_00952_4 crossref_primary_10_1109_TPAMI_2023_3289667 crossref_primary_10_1109_ACCESS_2023_3325883 crossref_primary_10_1016_j_procs_2025_04_229 crossref_primary_10_1016_j_procs_2025_04_471 crossref_primary_10_1080_21681163_2023_2274411 crossref_primary_10_1016_j_eswa_2023_122347 crossref_primary_10_3390_app10103429 crossref_primary_10_1109_ACCESS_2023_3289224 crossref_primary_10_1186_s12859_022_04794_9 crossref_primary_10_1007_s11042_023_14970_5 crossref_primary_10_3233_JIFS_221990 crossref_primary_10_1016_j_compbiomed_2024_108971 crossref_primary_10_3390_jimaging6110121 crossref_primary_10_1080_00051144_2024_2315405 crossref_primary_10_32604_cmc_2021_014404 crossref_primary_10_1007_s00500_023_08542_w crossref_primary_10_21015_vtse_v12i1_1698 crossref_primary_10_1016_j_bspc_2022_103644 crossref_primary_10_1007_s13755_022_00193_9 crossref_primary_10_3390_jimaging7120269 crossref_primary_10_1088_1402_4896_ad591b crossref_primary_10_3390_computation12030044 crossref_primary_10_1007_s11042_020_09810_9 crossref_primary_10_1002_cpe_7541 crossref_primary_10_1007_s11042_024_19333_2 crossref_primary_10_1142_S0219519425300029 crossref_primary_10_3390_electronics14010040 crossref_primary_10_1155_2021_9025470 crossref_primary_10_1002_jemt_23597 crossref_primary_10_1155_2023_1224619 crossref_primary_10_1155_2021_3365043 crossref_primary_10_1007_s11042_023_17233_5 crossref_primary_10_1080_13682199_2023_2166805 crossref_primary_10_1109_ACCESS_2020_3016319 crossref_primary_10_1007_s11042_021_11591_8 crossref_primary_10_1016_j_eswa_2020_114545 crossref_primary_10_1016_j_compbiomed_2024_108910 crossref_primary_10_1007_s00500_023_08319_1 crossref_primary_10_1007_s11042_025_20706_4 crossref_primary_10_1002_jmri_28877 crossref_primary_10_1038_s41598_025_13155_4 crossref_primary_10_1016_j_gep_2022_119248 crossref_primary_10_32604_jai_2022_032974 crossref_primary_10_1016_j_sigpro_2021_108273 crossref_primary_10_1007_s42979_024_03526_5 crossref_primary_10_1088_1742_6596_1921_1_012080 crossref_primary_10_1109_ACCESS_2023_3242666 crossref_primary_10_3390_brainsci11081055 crossref_primary_10_1007_s11042_021_11098_2 crossref_primary_10_1007_s42600_023_00301_y crossref_primary_10_3390_diagnostics13040668 crossref_primary_10_1109_ACCESS_2023_3306961 crossref_primary_10_3390_math13152393 crossref_primary_10_1016_j_compbiomed_2025_110242 crossref_primary_10_32604_cmc_2021_016698 crossref_primary_10_1155_2022_7028717 crossref_primary_10_3233_JIFS_211879 crossref_primary_10_32604_cmc_2022_030923 crossref_primary_10_1007_s11042_022_13016_6 crossref_primary_10_1007_s11042_024_20386_6 crossref_primary_10_1016_j_measen_2023_100691 crossref_primary_10_1109_ACCESS_2023_3340443 crossref_primary_10_1002_mp_14901 crossref_primary_10_1007_s10462_022_10245_x crossref_primary_10_1038_s41598_024_73803_z crossref_primary_10_1007_s11063_023_11276_3 crossref_primary_10_3103_S8756699024700146 crossref_primary_10_1109_ACCESS_2024_3523330 crossref_primary_10_1007_s11831_023_09898_w crossref_primary_10_1007_s11042_025_21068_7 crossref_primary_10_1007_s12672_025_03501_3 crossref_primary_10_1109_ACCESS_2025_3552593 crossref_primary_10_3390_diagnostics14161714 crossref_primary_10_1038_s41598_025_87934_4 crossref_primary_10_1016_j_eswa_2022_118833 crossref_primary_10_1016_j_bspc_2022_104017 crossref_primary_10_1109_ACCESS_2023_3257722 crossref_primary_10_1007_s41870_023_01572_5 crossref_primary_10_4103_jmp_jmp_149_24 |
| Cites_doi | 10.1016/j.fss.2008.11.016 10.1088/0031-9155/58/13/R97 10.1016/j.media.2016.05.004 10.1016/0893-6080(92)90008-7 10.1109/TMI.2016.2538465 10.1007/s11548-011-0649-2 10.1109/TPAMI.2004.1261097 10.1016/j.neucom.2017.12.032 10.1007/s10107-012-0629-5 10.1109/TMI.2014.2377694 10.1016/j.neuroimage.2006.02.024 10.1016/j.artmed.2018.08.008 10.1016/j.mri.2009.01.024 10.1007/s00401-010-0750-6 10.1016/j.cmpb.2018.09.007 10.1016/j.media.2017.10.002 10.1016/j.compmedimag.2013.05.007 10.1109/TMI.2011.2181857 10.1016/j.media.2016.10.004 10.1016/S0730-725X(99)00044-2 10.1109/TMI.2010.2046908 10.1016/j.media.2004.06.007 10.1097/WCO.0b013e328312c3a7 10.1109/ICBME.2014.7043934 10.1007/978-3-642-33418-4_80 10.1109/CVPR.2014.58 10.1109/CVPR.2016.266 10.5220/0005068501520157 10.1007/978-3-540-39903-2_65 10.1109/EMBC.2017.8037243 10.1007/978-3-642-33454-2_46 10.1109/EMBC.2015.7319032 |
| ContentType | Journal Article |
| Copyright | King Fahd University of Petroleum & Minerals 2019 Copyright Springer Nature B.V. 2019 |
| Copyright_xml | – notice: King Fahd University of Petroleum & Minerals 2019 – notice: Copyright Springer Nature B.V. 2019 |
| DBID | AAYXX CITATION |
| DOI | 10.1007/s13369-019-03967-8 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2191-4281 |
| EndPage | 9261 |
| ExternalDocumentID | 10_1007_s13369_019_03967_8 |
| GroupedDBID | -EM 0R~ 203 2KG 406 AAAVM AACDK AAHNG AAIAL AAJBT AANZL AARHV AASML AATNV AATVU AAUYE AAYTO AAYZH ABAKF ABDBF ABDZT ABECU ABFTD ABFTV ABJNI ABJOX ABKCH ABMQK ABQBU ABSXP ABTEG ABTKH ABTMW ABXPI ACAOD ACBXY ACDTI ACHSB ACMDZ ACMLO ACOKC ACPIV ACUHS ACZOJ ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEJRE AEMSY AEOHA AESKC AEVLU AEXYK AFBBN AFLOW AFQWF AGAYW AGJBK AGMZJ AGQEE AGQMX AGRTI AHAVH AHBYD AHSBF AIAKS AIGIU AILAN AITGF AJBLW AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS AMXSW AMYLF AOCGG AXYYD BGNMA CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESX FERAY FIGPU FINBP FNLPD FSGXE GGCAI GQ6 GQ7 H13 HG6 I-F IKXTQ IWAJR J-C JBSCW JZLTJ L8X LLZTM M4Y MK~ NPVJJ NQJWS NU0 O9J PT4 ROL RSV SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE TSG TUS UOJIU UTJUX UZXMN VFIZW Z5O Z7R Z7V Z7X Z7Y Z7Z Z81 Z83 Z85 Z88 ZMTXR ~8M AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION 06D 0VY 23M 29~ 2KM 30V 408 5GY 96X AAJKR AARTL AAYIU AAYQN AAZMS ABTHY ACGFS ACKNC ADHHG ADHIR AEGNC AEJHL AENEX AEPYU AETCA AFWTZ AFZKB AGDGC AGWZB AGYKE AHYZX AIIXL AMKLP AMYQR ANMIH AYJHY ESBYG FFXSO FRRFC FYJPI GGRSB GJIRD GX1 HMJXF HRMNR HZ~ I0C IXD J9A KOV O93 OVT P9P R9I RLLFE S27 S3B SEG SHX T13 U2A UG4 VC2 W48 WK8 ~A9 |
| ID | FETCH-LOGICAL-c319t-db1282bb8dd0e037fef5c5486333d140e05d6f27bf9f7918e10e9933f17c17a3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 122 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000487119100019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2193-567X 1319-8025 |
| IngestDate | Mon Jun 30 09:01:14 EDT 2025 Tue Nov 18 20:26:21 EST 2025 Sat Nov 29 02:51:28 EST 2025 Fri Feb 21 02:40:08 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Keywords | Deep learning Gliomas segmentation CNN Brain tumor segmentation MRI |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-db1282bb8dd0e037fef5c5486333d140e05d6f27bf9f7918e10e9933f17c17a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2295058828 |
| PQPubID | 2044268 |
| PageCount | 13 |
| ParticipantIDs | proquest_journals_2295058828 crossref_primary_10_1007_s13369_019_03967_8 crossref_citationtrail_10_1007_s13369_019_03967_8 springer_journals_10_1007_s13369_019_03967_8 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-11-01 |
| PublicationDateYYYYMMDD | 2019-11-01 |
| PublicationDate_xml | – month: 11 year: 2019 text: 2019-11-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationTitle | Arabian journal for science and engineering (2011) |
| PublicationTitleAbbrev | Arab J Sci Eng |
| PublicationYear | 2019 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | Tabatabai, Stupp, van den Bent, Hegi, Tonn, Wick, Weller (CR4) 2010; 120 Pereira, Pinto, Alves, Silva (CR1) 2016; 35 CR38 CR37 Prastawa, Bullitt, Ho, Gerig (CR15) 2004; 8 CR36 CR35 CR34 CR33 Sikka, Sinha, Singh, Mishra (CR27) 2009; 27 CR31 Jiang, Yao, Huang, Yang, Chen, Feng (CR39) 2013; 37 Kamnitsas, Ledig, Newcombe, Simpson, Kane, Menon, Rueckert, Glocker (CR45) 2017; 36 Bernal, Kushibar, Asfaw, Valverde, Oliver, Martí, Lladó (CR12) 2018; 95 Doyle, Vasseur, Dojat, Forbes (CR14) 2013; 1 Webb, Guimond, Eldridge, Chadwick, Meunier, Thirion, Roberts (CR24) 1999; 17 Yang, Zhang, Frangi, Yang (CR32) 2004; 26 Rousseau, Mokhtari, Duyckaerts (CR3) 2008; 21 Saouli, Akil, Kachouri (CR41) 2018; 166 Zhao, Yihong, Song, Li, Zhang, Fan (CR5) 2018; 43 CR8 CR7 Smith, Jenkinson, Johansen-Berg, Rueckert, Nichols, Mackay, Watkins, Ciccarelli, Cader, Matthews (CR25) 2006; 31 CR9 CR48 Tustison, Avants, Cook, Zheng, Egan, Yushkevich, Gee (CR42) 2010; 29 Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (CR46) 2014; 15 CR47 CR43 CR40 Hamamci, Kucuk, Karaman, Engin, Unal (CR21) 2012; 31 CR19 CR16 CR13 CR11 CR10 Nesterov (CR49) 2013; 140 Khotanlou, Colliot, Atif, Bloch (CR17) 2009; 160 CR29 CR28 Popuri, Cobzas, Murtha, Jägersand (CR18) 2012; 7 CR26 Bauer, Wiest, Nolte, Reyes (CR2) 2013; 58 CR23 CR22 CR20 Hussain, Anwar, Majid (CR50) 2018; 282 Van Ooyen, Nienhuis (CR44) 1992; 5 Havaei, Davy, Warde-Farley, Biard, Courville, Bengio, Pal, Jodoin, Larochelle (CR6) 2017; 35 Menze, Jakab, Bauer, Kalpathy-Cramer, Farahani, Kirby, Burren, Porz, Slotboom, Wiest (CR30) 2015; 34 3967_CR26 3967_CR23 R Saouli (3967_CR41) 2018; 166 J Jiang (3967_CR39) 2013; 37 3967_CR29 3967_CR28 BH Menze (3967_CR30) 2015; 34 M Prastawa (3967_CR15) 2004; 8 SM Smith (3967_CR25) 2006; 31 3967_CR22 3967_CR20 J Webb (3967_CR24) 1999; 17 G Tabatabai (3967_CR4) 2010; 120 M Havaei (3967_CR6) 2017; 35 3967_CR36 3967_CR37 3967_CR34 K Sikka (3967_CR27) 2009; 27 3967_CR35 A Hamamci (3967_CR21) 2012; 31 3967_CR38 Y Nesterov (3967_CR49) 2013; 140 3967_CR33 3967_CR31 J Bernal (3967_CR12) 2018; 95 3967_CR47 3967_CR48 3967_CR40 3967_CR43 K Kamnitsas (3967_CR45) 2017; 36 A Van Ooyen (3967_CR44) 1992; 5 NJ Tustison (3967_CR42) 2010; 29 K Popuri (3967_CR18) 2012; 7 J Yang (3967_CR32) 2004; 26 S Pereira (3967_CR1) 2016; 35 S Bauer (3967_CR2) 2013; 58 3967_CR13 A Rousseau (3967_CR3) 2008; 21 3967_CR19 3967_CR16 3967_CR7 S Doyle (3967_CR14) 2013; 1 3967_CR8 3967_CR9 H Khotanlou (3967_CR17) 2009; 160 X Zhao (3967_CR5) 2018; 43 3967_CR10 3967_CR11 N Srivastava (3967_CR46) 2014; 15 S Hussain (3967_CR50) 2018; 282 |
| References_xml | – volume: 160 start-page: 1457 issue: 10 year: 2009 end-page: 1473 ident: CR17 article-title: 3D brain tumor segmentation in MRI using fuzzy classification, symmetry analysis and spatially constrained deformable models publication-title: Fuzzy Sets Syst. doi: 10.1016/j.fss.2008.11.016 – ident: CR22 – volume: 15 start-page: 1929 issue: 1 year: 2014 end-page: 1958 ident: CR46 article-title: Dropout: a simple way to prevent neural networks from overfitting publication-title: J. Mach. Learn. Res. – ident: CR16 – volume: 58 start-page: R97 issue: 13 year: 2013 ident: CR2 article-title: A survey of MRI-based medical image analysis for brain tumor studies publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/58/13/R97 – volume: 35 start-page: 18 year: 2017 end-page: 31 ident: CR6 article-title: Brain tumor segmentation with deep neural networks publication-title: Med. Image Anal. doi: 10.1016/j.media.2016.05.004 – volume: 5 start-page: 465 issue: 3 year: 1992 end-page: 471 ident: CR44 article-title: Improving the convergence of the back-propagation algorithm publication-title: Neural Netw. doi: 10.1016/0893-6080(92)90008-7 – ident: CR35 – ident: CR29 – ident: CR8 – volume: 35 start-page: 1240 issue: 5 year: 2016 end-page: 1251 ident: CR1 article-title: Brain tumor segmentation using convolutional neural networks in MRI images publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2016.2538465 – volume: 7 start-page: 493 issue: 4 year: 2012 end-page: 506 ident: CR18 article-title: 3D variational brain tumor segmentation using Dirichlet priors on a clustered feature set publication-title: Int. J. Comput. Assist. Radiol. Surg. doi: 10.1007/s11548-011-0649-2 – ident: CR19 – ident: CR11 – ident: CR9 – volume: 26 start-page: 131 issue: 1 year: 2004 end-page: 137 ident: CR32 article-title: Two-dimensional PCA: a new approach to appearance-based face representation and recognition publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2004.1261097 – ident: CR36 – volume: 1 start-page: 18 year: 2013 end-page: 22 ident: CR14 article-title: Fully automatic brain tumor segmentation from multiple MR sequences using hidden Markov fields and variational EM publication-title: Proc. NCI-MICCAI BRATS – volume: 282 start-page: 248 year: 2018 end-page: 261 ident: CR50 article-title: Segmentation of glioma tumors in brain using deep convolutional neural network publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.12.032 – volume: 140 start-page: 125 issue: 1 year: 2013 end-page: 161 ident: CR49 article-title: Gradient methods for minimizing composite functions publication-title: Math. Program. doi: 10.1007/s10107-012-0629-5 – ident: CR26 – ident: CR43 – ident: CR47 – volume: 34 start-page: 1993 issue: 10 year: 2015 end-page: 2024 ident: CR30 article-title: The multimodal brain tumor image segmentation benchmark (BRATS) publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2014.2377694 – volume: 31 start-page: 1487 issue: 4 year: 2006 end-page: 1505 ident: CR25 article-title: Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data publication-title: Neuroimage doi: 10.1016/j.neuroimage.2006.02.024 – ident: CR37 – ident: CR10 – volume: 95 start-page: 64 year: 2018 end-page: 81 ident: CR12 article-title: Deep convolutional neural networks for brain image analysis on magnetic resonance imaging: a review publication-title: Artif. Intell. Med. doi: 10.1016/j.artmed.2018.08.008 – ident: CR33 – volume: 27 start-page: 994 issue: 7 year: 2009 end-page: 1004 ident: CR27 article-title: A fully automated algorithm under modified FCM framework for improved brain MR image segmentation publication-title: Magn. Reson. Imaging doi: 10.1016/j.mri.2009.01.024 – volume: 120 start-page: 585 issue: 5 year: 2010 end-page: 592 ident: CR4 article-title: Molecular diagnostics of gliomas: the clinical perspective publication-title: Acta Neuropathol. doi: 10.1007/s00401-010-0750-6 – ident: CR40 – volume: 166 start-page: 39 year: 2018 end-page: 49 ident: CR41 article-title: Fully automatic brain tumor segmentation using end-to-end incremental deep neural networks in MRI images publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2018.09.007 – ident: CR23 – volume: 43 start-page: 98 year: 2018 end-page: 111 ident: CR5 article-title: A deep learning model integrating FCNNs and CRFs for brain tumor segmentation publication-title: Med. Image Anal. doi: 10.1016/j.media.2017.10.002 – volume: 37 start-page: 512 issue: 7 year: 2013 end-page: 521 ident: CR39 article-title: 3D brain tumor segmentation in multimodal MR images based on learning population- and patient-specific feature sets publication-title: Comput. Med. Imaging Graph. doi: 10.1016/j.compmedimag.2013.05.007 – ident: CR48 – volume: 31 start-page: 790 issue: 3 year: 2012 end-page: 804 ident: CR21 article-title: Tumor-cut: segmentation of brain tumors on contrast enhanced mr images for radiosurgery applications publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2011.2181857 – ident: CR38 – volume: 36 start-page: 61 year: 2017 end-page: 78 ident: CR45 article-title: Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation publication-title: Med. Image Anal. doi: 10.1016/j.media.2016.10.004 – ident: CR31 – ident: CR13 – volume: 17 start-page: 1149 issue: 8 year: 1999 end-page: 1161 ident: CR24 article-title: Automatic detection of hippocampal atrophy on magnetic resonance images publication-title: Magn. Reson. Imaging doi: 10.1016/S0730-725X(99)00044-2 – volume: 29 start-page: 1310 issue: 6 year: 2010 end-page: 1320 ident: CR42 article-title: N4ITK: improved N3 bias correction publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2010.2046908 – volume: 8 start-page: 275 issue: 3 year: 2004 end-page: 283 ident: CR15 article-title: A brain tumor segmentation framework based on outlier detection publication-title: Med. Image Anal. doi: 10.1016/j.media.2004.06.007 – ident: CR34 – ident: CR7 – ident: CR28 – volume: 21 start-page: 720 issue: 6 year: 2008 end-page: 727 ident: CR3 article-title: The 2007 who classification of tumors of the central nervous system—what has changed? publication-title: Curr. Opin. Neurol. doi: 10.1097/WCO.0b013e328312c3a7 – ident: CR20 – ident: 3967_CR35 – volume: 35 start-page: 1240 issue: 5 year: 2016 ident: 3967_CR1 publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2016.2538465 – ident: 3967_CR7 doi: 10.1109/ICBME.2014.7043934 – volume: 31 start-page: 1487 issue: 4 year: 2006 ident: 3967_CR25 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2006.02.024 – ident: 3967_CR29 – ident: 3967_CR20 doi: 10.1007/978-3-642-33418-4_80 – ident: 3967_CR22 – volume: 15 start-page: 1929 issue: 1 year: 2014 ident: 3967_CR46 publication-title: J. Mach. Learn. Res. – ident: 3967_CR8 – ident: 3967_CR31 – volume: 37 start-page: 512 issue: 7 year: 2013 ident: 3967_CR39 publication-title: Comput. Med. Imaging Graph. doi: 10.1016/j.compmedimag.2013.05.007 – ident: 3967_CR23 doi: 10.1109/CVPR.2014.58 – ident: 3967_CR37 doi: 10.1109/CVPR.2016.266 – volume: 17 start-page: 1149 issue: 8 year: 1999 ident: 3967_CR24 publication-title: Magn. Reson. Imaging doi: 10.1016/S0730-725X(99)00044-2 – volume: 29 start-page: 1310 issue: 6 year: 2010 ident: 3967_CR42 publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2010.2046908 – ident: 3967_CR36 – ident: 3967_CR26 doi: 10.5220/0005068501520157 – volume: 282 start-page: 248 year: 2018 ident: 3967_CR50 publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.12.032 – volume: 35 start-page: 18 year: 2017 ident: 3967_CR6 publication-title: Med. Image Anal. doi: 10.1016/j.media.2016.05.004 – volume: 1 start-page: 18 year: 2013 ident: 3967_CR14 publication-title: Proc. NCI-MICCAI BRATS – ident: 3967_CR19 – volume: 26 start-page: 131 issue: 1 year: 2004 ident: 3967_CR32 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2004.1261097 – volume: 140 start-page: 125 issue: 1 year: 2013 ident: 3967_CR49 publication-title: Math. Program. doi: 10.1007/s10107-012-0629-5 – ident: 3967_CR11 doi: 10.1109/TMI.2014.2377694 – volume: 27 start-page: 994 issue: 7 year: 2009 ident: 3967_CR27 publication-title: Magn. Reson. Imaging doi: 10.1016/j.mri.2009.01.024 – ident: 3967_CR9 – volume: 5 start-page: 465 issue: 3 year: 1992 ident: 3967_CR44 publication-title: Neural Netw. doi: 10.1016/0893-6080(92)90008-7 – ident: 3967_CR33 – volume: 31 start-page: 790 issue: 3 year: 2012 ident: 3967_CR21 publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2011.2181857 – volume: 8 start-page: 275 issue: 3 year: 2004 ident: 3967_CR15 publication-title: Med. Image Anal. doi: 10.1016/j.media.2004.06.007 – volume: 36 start-page: 61 year: 2017 ident: 3967_CR45 publication-title: Med. Image Anal. doi: 10.1016/j.media.2016.10.004 – volume: 7 start-page: 493 issue: 4 year: 2012 ident: 3967_CR18 publication-title: Int. J. Comput. Assist. Radiol. Surg. doi: 10.1007/s11548-011-0649-2 – volume: 166 start-page: 39 year: 2018 ident: 3967_CR41 publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2018.09.007 – volume: 43 start-page: 98 year: 2018 ident: 3967_CR5 publication-title: Med. Image Anal. doi: 10.1016/j.media.2017.10.002 – ident: 3967_CR47 – volume: 58 start-page: R97 issue: 13 year: 2013 ident: 3967_CR2 publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/58/13/R97 – ident: 3967_CR43 – volume: 34 start-page: 1993 issue: 10 year: 2015 ident: 3967_CR30 publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2014.2377694 – volume: 120 start-page: 585 issue: 5 year: 2010 ident: 3967_CR4 publication-title: Acta Neuropathol. doi: 10.1007/s00401-010-0750-6 – ident: 3967_CR16 doi: 10.1007/978-3-540-39903-2_65 – ident: 3967_CR10 doi: 10.1109/EMBC.2017.8037243 – ident: 3967_CR38 – ident: 3967_CR28 doi: 10.1007/978-3-642-33454-2_46 – ident: 3967_CR34 – ident: 3967_CR40 – ident: 3967_CR13 doi: 10.1109/EMBC.2015.7319032 – ident: 3967_CR48 – volume: 160 start-page: 1457 issue: 10 year: 2009 ident: 3967_CR17 publication-title: Fuzzy Sets Syst. doi: 10.1016/j.fss.2008.11.016 – volume: 21 start-page: 720 issue: 6 year: 2008 ident: 3967_CR3 publication-title: Curr. Opin. Neurol. doi: 10.1097/WCO.0b013e328312c3a7 – volume: 95 start-page: 64 year: 2018 ident: 3967_CR12 publication-title: Artif. Intell. Med. doi: 10.1016/j.artmed.2018.08.008 |
| SSID | ssib048395113 ssj0001916267 ssj0061873 |
| Score | 2.508253 |
| Snippet | Gliomas are the most infiltrative and life-threatening brain tumors with exceptionally quick development. Gliomas segmentation using computer-aided diagnosis... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 9249 |
| SubjectTerms | Artificial neural networks Brain Brain cancer Deep learning Engineering Humanities and Social Sciences Image detection Image segmentation Machine learning Magnetic resonance imaging Medical imaging multidisciplinary NMR Nuclear magnetic resonance Post-production processing Research Article - Computer Engineering and Computer Science Science Tumors |
| Title | Brain Tumor Detection and Segmentation in MR Images Using Deep Learning |
| URI | https://link.springer.com/article/10.1007/s13369-019-03967-8 https://www.proquest.com/docview/2295058828 |
| Volume | 44 |
| WOSCitedRecordID | wos000487119100019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 2191-4281 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001916267 issn: 2193-567X databaseCode: RSV dateStart: 20110101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagMMDAG1EoyAMbRHJix3FGXgUGKtRWqFvkOHaFRNOqafn9XFyHAAIkGDL5YkX38H0X3wOh04CYVEuZehH4Wo9xyb2UCQO6bJgKjeBMGTtsIup0xGAQP7qisKLKdq-uJO1JXRe7UcrL3B54aAzmLZbRCrg7UZpjt_dUaREDlw8ogtZ_WgABBXaULFgn9UIeDVz1zPfbfvZQNez8clNqHVB783-fvoU2HODEFwsN2UZLOt9B6x_aEO6i28tyTgTuz0fjKb7WM5udlWOZZ7inhyNXnZRjoHno4vsRHEEFtrkGQK0n2PVoHe6hfvumf3XnuQELngLLm3lZCt4pSFORZUQTEI82oYIQhlNKM4i8NAkzboIoNbGJYl9on2jAM9T4kfIjSfdRIx_n-gDhQEUsCyWRLNQsC3wZK8BVUhnO0pgR00R-xdNEuebj5QyMl6Rum1zyKAEeJZZHiWiis_d3JovWG79StypRJc4Mi6ScVU5CCCJg-bwSTb38826HfyM_QmtBKV1bo9hCjdl0ro_RqnqdPRfTE6ueb4BA2tQ |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT4MwFG90mqgHv43TqT14UxKgpcDRr7nFbTEbMbuRUtrFxLFlMP9-Hx2IGjXRA6c-GvI--n6Pvg-Ezm1TRZLzyHDB1xqUcWZE1FOgy4oKR3mMCqWHTbi9njcc-o9FUVhaZruXV5L6pK6K3QhheW4PPMQH8_aW0QoFj5Un8vUHT6UWUXD5gCJI9acFEJCtR8mCdRLDYe6wqJ75ftvPHqqCnV9uSrUDam7979O30WYBOPHVQkN20JJMdtHGhzaEe-j-Op8TgYP5eDLDtzLT2VkJ5kmMB3I0LqqTEgw03T5uj-EISrHONQBqOcVFj9bRPgqad8FNyygGLBgCLC8z4gi8kx1FXhyb0gTxSOUICGEYISSGyEuaTsyU7UbKV65vedIyJeAZoixXWC4nB6iWTBJ5iLAtXBo73OTUkTS2Le4LwFVcKEYjn5qqjqySp6Eomo_nMzBewqptcs6jEHgUah6FXh1dvL8zXbTe-JW6UYoqLMwwDfNZ5aYDQQQsX5aiqZZ_3u3ob-RnaK0VdDthp917OEbrdi5pXa_YQLVsNpcnaFW8Zs_p7FSr6hvKzd24 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI5gIAQH3ojBgBy4QUXbpK8jMAYTME1sQrtVaR4TEuumreP342QtHQiQEIee4kSqH7Xd2P4QOnVtlUjGEisAX2tRn_lWQkMFuqwo91ToU64M2ETQaoW9XtSe6-I31e7FleSsp0FPaUqzi5FQF2XjGyG-rvOBh0Rg6uEiWqIaNEjn653nQqMouH-IKEj51wWiIdfAyoKlEsvzg17eSfP9sZ-9VRmCfrk1Nc6osfH_19hE63kgii9nmrOFFmS6jdbmxhPuoNsrjR-Bu9PBcIzrMjNVWylmqcAd2R_kXUspBprHJ9wcwKdpgk0NAlDLEc5nt_Z3Ubdx072-s3LgBYuDRWaWSMBruUkSCmFLG8QmlcchtfEJIQIyMml7wldukKhIBZETSseWEOcQ5QTcCRjZQ5V0mMp9hF0eUOExm1FPUuE6LOIQbzGufJpE1FZV5BT8jXk-lFxjY7zG5ThlzaMYeBQbHsVhFZ197BnNRnL8Sl0rxBbn5jmJNYa57UFyAcvnhZjK5Z9PO_gb-Qlaadcb8UOzdX-IVl0taNPGWEOVbDyVR2iZv2Uvk_Gx0dp3RFHmnA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Brain+Tumor+Detection+and+Segmentation+in+MR+Images+Using+Deep+Learning&rft.jtitle=Arabian+journal+for+science+and+engineering+%282011%29&rft.au=Sajid%2C+Sidra&rft.au=Hussain%2C+Saddam&rft.au=Sarwar%2C+Amna&rft.date=2019-11-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=2193-567X&rft.eissn=2191-4281&rft.volume=44&rft.issue=11&rft.spage=9249&rft.epage=9261&rft_id=info:doi/10.1007%2Fs13369-019-03967-8&rft.externalDocID=10_1007_s13369_019_03967_8 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2193-567X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2193-567X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2193-567X&client=summon |