An improved particle swarm optimization with backtracking search optimization algorithm for solving continuous optimization problems

The particle swarm optimization (PSO) is a population-based stochastic optimization technique by the social behavior of bird flocking and fish schooling. The PSO has a high convergence rate. It is prone to losing diversity along the iterative optimization process and may get trapped into a poor loca...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Engineering with computers Ročník 38; číslo Suppl 4; s. 2797 - 2831
Hlavní autoři: Zaman, Hamid Reza Rafat, Gharehchopogh, Farhad Soleimanian
Médium: Journal Article
Jazyk:angličtina
Vydáno: London Springer London 01.10.2022
Springer Nature B.V
Témata:
ISSN:0177-0667, 1435-5663
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The particle swarm optimization (PSO) is a population-based stochastic optimization technique by the social behavior of bird flocking and fish schooling. The PSO has a high convergence rate. It is prone to losing diversity along the iterative optimization process and may get trapped into a poor local optimum. Overcoming these defects is still a significant problem in PSO applications. In contrast, the backtracking search optimization algorithm (BSA) has a robust global exploration ability, whereas, it has a low local exploitation ability and converges slowly. This paper proposed an improved PSO with BSA called PSOBSA to resolve the original PSO algorithm’s problems that BSA’s mutation and crossover operators were modified through the neighborhood to increase the convergence rate. In addition to that, a new mutation operator was introduced to improve the convergence accuracy and evade the local optimum. Several benchmark problems are used to test the performance and efficiency of the proposed PSOBSA. The experimental results show that PSOBSA outperforms other well-known metaheuristic algorithms and several state-of-the-art PSO variants in terms of global exploration ability and accuracy, and rate of convergence on almost all of the benchmark problems.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0177-0667
1435-5663
DOI:10.1007/s00366-021-01431-6