Efficient Encrypted Images Filtering and Transform Coding With Walsh-Hadamard Transform and Parallelization

Since homomorphic encryption operations have high computational complexity, image applications based on homomorphic encryption are often time consuming, which makes them impractical. In this paper, we study efficient encrypted image applications with the encrypted domain Walsh-Hadamard transform (WH...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on image processing Ročník 27; číslo 5; s. 2541 - 2556
Hlavní autoři: Zheng, Peijia, Huang, Jiwu
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States IEEE 01.05.2018
Témata:
ISSN:1057-7149, 1941-0042, 1941-0042
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Since homomorphic encryption operations have high computational complexity, image applications based on homomorphic encryption are often time consuming, which makes them impractical. In this paper, we study efficient encrypted image applications with the encrypted domain Walsh-Hadamard transform (WHT) and parallel algorithms. We first present methods to implement real and complex WHTs in the encrypted domain. We then propose a parallel algorithm to improve the computational efficiency of the encrypted domain WHT. To compare the WHT with the discrete cosine transform (DCT), integer DCT, and Haar transform in the encrypted domain, we conduct theoretical analysis and experimental verification, which reveal that the encrypted domain WHT has the advantages of lower computational complexity and a shorter running time. Our analysis shows that the encrypted WHT can accommodate plaintext data of larger values and has better energy compaction ability on dithered images. We propose two encrypted image applications using the encrypted domain WHT. To accelerate the practical execution, we present two parallelization strategies for the proposed applications. The experimental results show that the speedup of the homomorphic encrypted image application exceeds 12.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1057-7149
1941-0042
1941-0042
DOI:10.1109/TIP.2018.2802199