Selective retinex enhancement based on the clustering algorithm and block-matching 3D for optical coherence tomography images

It is important to enhance the contrast and remove the speckle noise for optical coherence tomography (OCT) images. In this paper, we propose a selective retinex enhancement method based on the fuzzy c-means (FCM) clustering algorithm to enhance only the structure part in OCT images and combines wit...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Applied optics. Optical technology and biomedical optics Ročník 58; číslo 36; s. 9861
Hlavní autori: Hu, Yibing, Tang, Chen, Xu, Min, Lei, Zhenkun
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States 20.12.2019
ISSN:1559-128X, 2155-3165, 1539-4522
On-line prístup:Zistit podrobnosti o prístupe
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:It is important to enhance the contrast and remove the speckle noise for optical coherence tomography (OCT) images. In this paper, we propose a selective retinex enhancement method based on the fuzzy c-means (FCM) clustering algorithm to enhance only the structure part in OCT images and combines with the block-matching 3D (BM3D) algorithm for filtering. In the proposed selective retinex enhancement method, we first calculate the feature image of the original image, which includes the mean value and standard deviation of each pixel in the original image and its correlation image. Second, by applying the FCM clustering algorithm to the feature image, a mask is generated that can distinguish the structure part from the background part in the OCT image. Then, the mask is applied to the multi-scale retinex algorithm, and only the structure part in the OCT image is enhanced. Moreover, the BM3D method is applied to filter the enhanced image. Experimental results demonstrate that the proposed method performs impressively in improving the contrast and removing the speckle noise of OCT images, and it provides better quantitative performance in terms of signal-to-noise ratio, contrast-to-noise ratio, equivalent number of looks, and the edge preservation parameter $ \beta $β.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1559-128X
2155-3165
1539-4522
DOI:10.1364/AO.58.009861