Second-Order Optimality Conditions for Infinite-Dimensional Quadratic Programs

Second-order necessary and sufficient optimality conditions for local solutions and locally unique solutions of generalized quadratic programming problems in Banach spaces are established in this paper. Since the decomposition procedures using orthogonality relations in Euclidean spaces and the comp...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of optimization theory and applications Ročník 192; číslo 2; s. 426 - 442
Hlavní autor: An, Duong Thi Viet
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.02.2022
Springer Nature B.V
Témata:
ISSN:0022-3239, 1573-2878
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Second-order necessary and sufficient optimality conditions for local solutions and locally unique solutions of generalized quadratic programming problems in Banach spaces are established in this paper. Since the decomposition procedures using orthogonality relations in Euclidean spaces and the compactness of finite-dimensional unit spheres, which worked well for finite-dimensional quadratic programs, cannot be applied to the Banach space setting, a series of new constructions and arguments are proposed. These results give a comprehensive extension of the corresponding theorems on finite-dimensional quadratic programs.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0022-3239
1573-2878
DOI:10.1007/s10957-021-01967-z