Second-Order Optimality Conditions for Infinite-Dimensional Quadratic Programs
Second-order necessary and sufficient optimality conditions for local solutions and locally unique solutions of generalized quadratic programming problems in Banach spaces are established in this paper. Since the decomposition procedures using orthogonality relations in Euclidean spaces and the comp...
Saved in:
| Published in: | Journal of optimization theory and applications Vol. 192; no. 2; pp. 426 - 442 |
|---|---|
| Main Author: | |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
Springer US
01.02.2022
Springer Nature B.V |
| Subjects: | |
| ISSN: | 0022-3239, 1573-2878 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Second-order necessary and sufficient optimality conditions for local solutions and locally unique solutions of generalized quadratic programming problems in Banach spaces are established in this paper. Since the decomposition procedures using orthogonality relations in Euclidean spaces and the compactness of finite-dimensional unit spheres, which worked well for finite-dimensional quadratic programs, cannot be applied to the Banach space setting, a series of new constructions and arguments are proposed. These results give a comprehensive extension of the corresponding theorems on finite-dimensional quadratic programs. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0022-3239 1573-2878 |
| DOI: | 10.1007/s10957-021-01967-z |