Feature selection using cloud-based parallel genetic algorithm for intrusion detection data classification

With the exponential growth of the amount of data being generated, stored and processed on a daily basis in the machine learning, data analytics and decision-making systems, the data preprocessing established itself as the key factor for building reliable high-performance machine learning models. On...

Full description

Saved in:
Bibliographic Details
Published in:Neural computing & applications Vol. 33; no. 18; pp. 11861 - 11873
Main Authors: Mehanović, Dželila, Kečo, Dino, Kevrić, Jasmin, Jukić, Samed, Miljković, Adnan, Mašetić, Zerina
Format: Journal Article
Language:English
Published: London Springer London 01.09.2021
Springer Nature B.V
Subjects:
ISSN:0941-0643, 1433-3058
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract With the exponential growth of the amount of data being generated, stored and processed on a daily basis in the machine learning, data analytics and decision-making systems, the data preprocessing established itself as the key factor for building reliable high-performance machine learning models. One of the roles in preprocessing is variable reduction using feature selection methods; however, the processing time needed for these methods is a major drawback. This study aims at mitigating this problem by migrating the algorithm to a MapReduce implementation suitable for parallelization on a high number of commodity hardware units. The genetic algorithm-based methods were put in the focus of this study. Hadoop, an open-source MapReduce library, was used as a framework for implementing parallel genetic algorithms within our research. The representative machine learning methods, SVM (support vector machine), ANN (artificial neural network), RT (random tree), logistic regression and Naive Bayes, were embedded into implementation for feature selection. The feature selection methods were applied to four NSL-KDD data sets, and the number of features is reduced from cca 40 to cca 10 data sets with the accuracy of 90.45%. These results have both significant practical and theoretical impact. On the one hand, the genetic algorithm has been parallelized in the MapReduce manner, which has been considered unachievable in a strict sense. Furthermore, the genetic algorithm allows randomness-enhanced feature selection and its parallelization reduces overall data preprocessing and allows larger population count which in turn leads to better feature selection. On the practical side, it has been shown that this implementation outperforms the existing feature selection methods.
AbstractList With the exponential growth of the amount of data being generated, stored and processed on a daily basis in the machine learning, data analytics and decision-making systems, the data preprocessing established itself as the key factor for building reliable high-performance machine learning models. One of the roles in preprocessing is variable reduction using feature selection methods; however, the processing time needed for these methods is a major drawback. This study aims at mitigating this problem by migrating the algorithm to a MapReduce implementation suitable for parallelization on a high number of commodity hardware units. The genetic algorithm-based methods were put in the focus of this study. Hadoop, an open-source MapReduce library, was used as a framework for implementing parallel genetic algorithms within our research. The representative machine learning methods, SVM (support vector machine), ANN (artificial neural network), RT (random tree), logistic regression and Naive Bayes, were embedded into implementation for feature selection. The feature selection methods were applied to four NSL-KDD data sets, and the number of features is reduced from cca 40 to cca 10 data sets with the accuracy of 90.45%. These results have both significant practical and theoretical impact. On the one hand, the genetic algorithm has been parallelized in the MapReduce manner, which has been considered unachievable in a strict sense. Furthermore, the genetic algorithm allows randomness-enhanced feature selection and its parallelization reduces overall data preprocessing and allows larger population count which in turn leads to better feature selection. On the practical side, it has been shown that this implementation outperforms the existing feature selection methods.
Author Mehanović, Dželila
Jukić, Samed
Kečo, Dino
Miljković, Adnan
Kevrić, Jasmin
Mašetić, Zerina
Author_xml – sequence: 1
  givenname: Dželila
  orcidid: 0000-0001-7731-0478
  surname: Mehanović
  fullname: Mehanović, Dželila
  email: dzelila.mehanovic@ibu.edu.ba
  organization: Faculty of Engineering and Natural Sciences, International Burch University
– sequence: 2
  givenname: Dino
  surname: Kečo
  fullname: Kečo, Dino
  organization: Faculty of Engineering and Natural Sciences, International Burch University
– sequence: 3
  givenname: Jasmin
  surname: Kevrić
  fullname: Kevrić, Jasmin
  organization: Faculty of Engineering and Natural Sciences, International Burch University
– sequence: 4
  givenname: Samed
  surname: Jukić
  fullname: Jukić, Samed
  organization: Faculty of Engineering and Natural Sciences, International Burch University
– sequence: 5
  givenname: Adnan
  surname: Miljković
  fullname: Miljković, Adnan
  organization: Faculty of Engineering and Natural Sciences, International Burch University
– sequence: 6
  givenname: Zerina
  surname: Mašetić
  fullname: Mašetić, Zerina
  organization: Faculty of Engineering and Natural Sciences, International Burch University
BookMark eNp9kE9PAyEQxYmpiW31C3jaxPMqLMv-OZrGqkkTL3omLAwrDWUrsAe_vazbxMRDDxPCML83vLdCCzc4QOiW4HuCcf0QMGYFyfFUrKlJzi7QkpSU5jTdF2iJ2zI9VSW9QqsQ9hjjsmrYEu23IOLoIQtgQUYzuGwMxvWZtMOo8k4EUNlReGEt2KwHB9HITNh-8CZ-HjI9-My46BOUUAXxJKJEFElDhGC0kWLqXaNLLWyAm9O5Rh_bp_fNS757e37dPO5ySUkbcwllx0DWjaoxVKwlQmlR0qoAjRluZa1rYIXGGhqikmtGJBEdLbsaWqmA0jW6m3WPfvgaIUS-H0bv0kpesIqy5Lso0lQxT0k_hOBB86M3B-G_OcF8ypTPmXI81ZQpZwlq_kHSxF9z0Qtjz6N0RkPa43rwf786Q_0AP2-P9g
CitedBy_id crossref_primary_10_1007_s10343_024_01044_1
crossref_primary_10_1016_j_eswa_2024_124215
crossref_primary_10_1002_cpe_8088
crossref_primary_10_1007_s10586_024_04385_8
crossref_primary_10_1007_s11416_025_00566_0
crossref_primary_10_1007_s11276_023_03571_7
crossref_primary_10_1016_j_cose_2024_103773
crossref_primary_10_1016_j_future_2023_09_035
crossref_primary_10_1155_2022_9663052
crossref_primary_10_1007_s41870_023_01192_z
crossref_primary_10_1016_j_compag_2024_109377
crossref_primary_10_1007_s00521_023_08983_2
crossref_primary_10_1038_s41598_024_81147_x
crossref_primary_10_3390_electronics12112427
crossref_primary_10_1007_s00521_022_07402_2
crossref_primary_10_1038_s41598_023_44437_4
crossref_primary_10_3390_electronics12051260
Cites_doi 10.6028/nist.sp.800-94
10.1080/19942060.2018.1452296
10.21533/scjournal.v1i2.61
10.1007/s00521-016-2418-1
10.1109/access.2020.2972627
10.1145/1327452.1327492
10.1016/j.aquaeng.2020.102053
10.1016/j.neucom.2020.08.063
10.1007/978-981-32-9343-4_16
10.1016/j.eswa.2017.04.017
10.1016/j.engappai.2012.05.023
10.1016/j.asoc.2009.06.019
10.1109/access.2019.2951750
10.1002/sec.403
10.1016/j.ymssp.2020.107353
10.1007/s00521-016-2780-z
10.1145/382912.382923
10.1016/j.jfranklin.2020.04.024
10.1007/978-3-642-20505-7_26
10.1016/j.future.2006.10.008
10.1109/icsmc.2011.6083684
10.1109/cisda.2009.5356528
10.1109/icdar.1995.598994
10.1109/spdp.1994.346184
10.1109/isda.2009.181
10.7551/mitpress/3927.001.0001
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021
The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.1007/s00521-021-05871-5
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central Korea
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Advanced Technologies & Aerospace Collection
Database_xml – sequence: 1
  dbid: P5Z
  name: Advanced Technologies & Aerospace Database
  url: https://search.proquest.com/hightechjournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1433-3058
EndPage 11873
ExternalDocumentID 10_1007_s00521_021_05871_5
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c319t-ce4b5ec78d70e6591adfa4362ef0509c7f7e52f0fe81d05251c1ab34b7e9cde33
IEDL.DBID RSV
ISICitedReferencesCount 21
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000629917800004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0941-0643
IngestDate Tue Nov 04 23:29:31 EST 2025
Sat Nov 29 02:59:20 EST 2025
Tue Nov 18 22:07:01 EST 2025
Fri Feb 21 02:48:36 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 18
Keywords Parallel genetic algorithm
Feature selection
Machine learning
Intrusion detection systems
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-ce4b5ec78d70e6591adfa4362ef0509c7f7e52f0fe81d05251c1ab34b7e9cde33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7731-0478
PQID 2563568522
PQPubID 2043988
PageCount 13
ParticipantIDs proquest_journals_2563568522
crossref_primary_10_1007_s00521_021_05871_5
crossref_citationtrail_10_1007_s00521_021_05871_5
springer_journals_10_1007_s00521_021_05871_5
PublicationCentury 2000
PublicationDate 20210900
2021-09-00
20210901
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 9
  year: 2021
  text: 20210900
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Neural computing & applications
PublicationTitleAbbrev Neural Comput & Applic
PublicationYear 2021
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References Wu, Chau (CR33) 2013; 26
Su, Sun, Zhu, Wang, Li (CR39) 2020; 8
Lim, Ong, Jin, Sendhoff, Lee (CR12) 2007; 23
Chen, Zhang, Stojanovic, Zhang, Zhang (CR6) 2020; 417
Keco, Subasi (CR36) 2012
Banan, Nasiri, Taheri-Garavand (CR35) 2020; 89
CR19
Kevric, Jukic, Subasi (CR16) 2017; 28
CR18
CR17
CR37
CR14
Tao, Wang, Chen, Stojanovic, Yang (CR8) 2020; 357
Shamshirband, Rabczuk, Chau (CR32) 2019; 7
Scarfone, Mell (CR10) 2007
CR11
CR31
Mohammadi, Raahemi, Akbari, Nassersharif (CR30) 2012; 5
McHugh (CR29) 2000; 3
Kečo, Subasi, Kevric (CR13) 2018; 30
Cheng, Chen, Stojanovic, He (CR7) 2021; 151
CR2
CR3
Mahfouz, Venugopal, Shiva (CR38) 2020
Jiang, Chin, Wang, Qu, Tsui (CR4) 2017; 82
CR5
Stallings (CR15) 2014
CR28
CR26
CR25
CR24
CR23
Wu, Banzhaf (CR27) 2010; 10
CR22
CR21
CR20
Salama, Eid, Ramadan, Darwish, Hassanien (CR1) 2011
Dean, Ghemawat (CR9) 2008; 51
Ardabili, Najafi, Shamshirband, Bidgoli, Deo, Chau (CR34) 2018; 12
5871_CR19
5871_CR18
P Cheng (5871_CR7) 2021; 151
D Kečo (5871_CR13) 2018; 30
5871_CR11
J Kevric (5871_CR16) 2017; 28
5871_CR17
5871_CR37
5871_CR14
5871_CR5
D Keco (5871_CR36) 2012
H Tao (5871_CR8) 2020; 357
J Dean (5871_CR9) 2008; 51
S Shamshirband (5871_CR32) 2019; 7
CL Wu (5871_CR33) 2013; 26
5871_CR31
5871_CR2
MA Salama (5871_CR1) 2011
5871_CR3
SX Wu (5871_CR27) 2010; 10
M Mohammadi (5871_CR30) 2012; 5
KA Scarfone (5871_CR10) 2007
5871_CR24
5871_CR23
A Banan (5871_CR35) 2020; 89
5871_CR22
5871_CR21
5871_CR28
J McHugh (5871_CR29) 2000; 3
5871_CR26
5871_CR25
AM Mahfouz (5871_CR38) 2020
5871_CR20
SF Ardabili (5871_CR34) 2018; 12
Z Chen (5871_CR6) 2020; 417
W Stallings (5871_CR15) 2014
D Lim (5871_CR12) 2007; 23
S Jiang (5871_CR4) 2017; 82
T Su (5871_CR39) 2020; 8
References_xml – ident: CR22
– ident: CR18
– year: 2007
  ident: CR10
  publication-title: Guide to Intrusion detection and prevention systems (IDPS)
  doi: 10.6028/nist.sp.800-94
– volume: 12
  start-page: 438
  issue: 1
  year: 2018
  end-page: 458
  ident: CR34
  article-title: Computational intelligence approach for modeling hydrogen production: a review
  publication-title: Eng Appl Comput Fluid Mech
  doi: 10.1080/19942060.2018.1452296
– year: 2012
  ident: CR36
  article-title: Parallelization of genetic algorithms using Hadoop Map/Reduce
  publication-title: Southeast Eur J Soft Comput
  doi: 10.21533/scjournal.v1i2.61
– volume: 28
  start-page: 1051
  issue: S1
  year: 2017
  end-page: 1058
  ident: CR16
  article-title: An effective combining classifier approach using tree algorithms for network intrusion detection
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-016-2418-1
– volume: 8
  start-page: 29575
  year: 2020
  end-page: 29585
  ident: CR39
  article-title: BAT: deep learning methods on network intrusion detection using NSL-KDD dataset
  publication-title: IEEE Access
  doi: 10.1109/access.2020.2972627
– ident: CR14
– ident: CR2
– volume: 51
  start-page: 107
  issue: 1
  year: 2008
  end-page: 113
  ident: CR9
  article-title: MapReduce: simplified data processing on large clusters
  publication-title: Commun ACM
  doi: 10.1145/1327452.1327492
– ident: CR37
– volume: 89
  start-page: 102053
  year: 2020
  ident: CR35
  article-title: Deep learning-based appearance features extraction for automated carp species identification
  publication-title: Aquac Eng
  doi: 10.1016/j.aquaeng.2020.102053
– volume: 417
  start-page: 322
  year: 2020
  end-page: 332
  ident: CR6
  article-title: Event-based fuzzy control for T-S fuzzy networked systems with various data missing
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.08.063
– year: 2020
  ident: CR38
  article-title: Comparative analysis of ML classifiers for network intrusion detection
  publication-title: Adv Intell Syst Comput
  doi: 10.1007/978-981-32-9343-4_16
– volume: 82
  start-page: 216
  year: 2017
  end-page: 230
  ident: CR4
  article-title: Modified genetic algorithm-based feature selection combined with pre-trained deep neural network for demand forecasting in outpatient department
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2017.04.017
– ident: CR25
– ident: CR23
– ident: CR21
– ident: CR19
– year: 2014
  ident: CR15
  publication-title: Cryptography and network security: principles and practice, international edition: principles and practice
– volume: 26
  start-page: 997
  issue: 3
  year: 2013
  end-page: 1007
  ident: CR33
  article-title: Prediction of rainfall time series using modular soft computingmethods
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2012.05.023
– ident: CR3
– ident: CR17
– volume: 10
  start-page: 1
  issue: 1
  year: 2010
  end-page: 35
  ident: CR27
  article-title: The use of computational intelligence in intrusion detection systems: a review
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2009.06.019
– volume: 7
  start-page: 164650
  year: 2019
  end-page: 164666
  ident: CR32
  article-title: A survey of deep learning techniques: application in wind and solar energy resources
  publication-title: IEEE Access
  doi: 10.1109/access.2019.2951750
– ident: CR31
– ident: CR11
– volume: 5
  start-page: 1296
  issue: 12
  year: 2012
  end-page: 1311
  ident: CR30
  article-title: New class-dependent feature transformation for intrusion detection systems
  publication-title: Secur Commun Netw
  doi: 10.1002/sec.403
– volume: 151
  start-page: 107353
  year: 2021
  ident: CR7
  article-title: Asynchronous fault detection filtering for piecewise homogenous Markov jump linear systems via a dual hidden Markov model
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2020.107353
– volume: 30
  start-page: 1601
  issue: 5
  year: 2018
  end-page: 1610
  ident: CR13
  article-title: Cloud computing-based parallel genetic algorithm for gene selection in cancer classification
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-016-2780-z
– volume: 3
  start-page: 262
  issue: 4
  year: 2000
  end-page: 294
  ident: CR29
  article-title: Testing intrusion detection systems
  publication-title: ACM Trans Inf Syst Secur (TISSEC)
  doi: 10.1145/382912.382923
– volume: 357
  start-page: 7286
  issue: 11
  year: 2020
  end-page: 7307
  ident: CR8
  article-title: An unsupervised fault diagnosis method for rolling bearing using STFT and generative neural networks
  publication-title: J Franklin Inst
  doi: 10.1016/j.jfranklin.2020.04.024
– ident: CR5
– year: 2011
  ident: CR1
  article-title: Hybrid intelligent intrusion detection scheme
  publication-title: Adv Intell Soft Comput
  doi: 10.1007/978-3-642-20505-7_26
– volume: 23
  start-page: 658
  issue: 4
  year: 2007
  end-page: 670
  ident: CR12
  article-title: Efficient hierarchical parallel genetic algorithms using grid computing
  publication-title: Futur Gener Comput Syst
  doi: 10.1016/j.future.2006.10.008
– ident: CR28
– ident: CR26
– ident: CR24
– ident: CR20
– volume: 12
  start-page: 438
  issue: 1
  year: 2018
  ident: 5871_CR34
  publication-title: Eng Appl Comput Fluid Mech
  doi: 10.1080/19942060.2018.1452296
– ident: 5871_CR19
– volume: 51
  start-page: 107
  issue: 1
  year: 2008
  ident: 5871_CR9
  publication-title: Commun ACM
  doi: 10.1145/1327452.1327492
– ident: 5871_CR23
– ident: 5871_CR37
  doi: 10.1109/icsmc.2011.6083684
– volume: 357
  start-page: 7286
  issue: 11
  year: 2020
  ident: 5871_CR8
  publication-title: J Franklin Inst
  doi: 10.1016/j.jfranklin.2020.04.024
– ident: 5871_CR25
– ident: 5871_CR17
  doi: 10.1109/cisda.2009.5356528
– ident: 5871_CR21
– ident: 5871_CR2
– volume: 417
  start-page: 322
  year: 2020
  ident: 5871_CR6
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.08.063
– volume-title: Guide to Intrusion detection and prevention systems (IDPS)
  year: 2007
  ident: 5871_CR10
  doi: 10.6028/nist.sp.800-94
– volume: 23
  start-page: 658
  issue: 4
  year: 2007
  ident: 5871_CR12
  publication-title: Futur Gener Comput Syst
  doi: 10.1016/j.future.2006.10.008
– volume: 8
  start-page: 29575
  year: 2020
  ident: 5871_CR39
  publication-title: IEEE Access
  doi: 10.1109/access.2020.2972627
– ident: 5871_CR28
– ident: 5871_CR26
  doi: 10.1109/icdar.1995.598994
– year: 2011
  ident: 5871_CR1
  publication-title: Adv Intell Soft Comput
  doi: 10.1007/978-3-642-20505-7_26
– ident: 5871_CR14
– ident: 5871_CR18
– ident: 5871_CR11
  doi: 10.1109/spdp.1994.346184
– volume: 28
  start-page: 1051
  issue: S1
  year: 2017
  ident: 5871_CR16
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-016-2418-1
– volume-title: Cryptography and network security: principles and practice, international edition: principles and practice
  year: 2014
  ident: 5871_CR15
– volume: 5
  start-page: 1296
  issue: 12
  year: 2012
  ident: 5871_CR30
  publication-title: Secur Commun Netw
  doi: 10.1002/sec.403
– ident: 5871_CR31
  doi: 10.1109/isda.2009.181
– volume: 151
  start-page: 107353
  year: 2021
  ident: 5871_CR7
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2020.107353
– ident: 5871_CR24
– volume: 7
  start-page: 164650
  year: 2019
  ident: 5871_CR32
  publication-title: IEEE Access
  doi: 10.1109/access.2019.2951750
– ident: 5871_CR3
– volume: 26
  start-page: 997
  issue: 3
  year: 2013
  ident: 5871_CR33
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2012.05.023
– ident: 5871_CR22
– ident: 5871_CR20
– volume: 82
  start-page: 216
  year: 2017
  ident: 5871_CR4
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2017.04.017
– volume: 3
  start-page: 262
  issue: 4
  year: 2000
  ident: 5871_CR29
  publication-title: ACM Trans Inf Syst Secur (TISSEC)
  doi: 10.1145/382912.382923
– volume: 10
  start-page: 1
  issue: 1
  year: 2010
  ident: 5871_CR27
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2009.06.019
– ident: 5871_CR5
  doi: 10.7551/mitpress/3927.001.0001
– year: 2020
  ident: 5871_CR38
  publication-title: Adv Intell Syst Comput
  doi: 10.1007/978-981-32-9343-4_16
– volume: 30
  start-page: 1601
  issue: 5
  year: 2018
  ident: 5871_CR13
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-016-2780-z
– volume: 89
  start-page: 102053
  year: 2020
  ident: 5871_CR35
  publication-title: Aquac Eng
  doi: 10.1016/j.aquaeng.2020.102053
– year: 2012
  ident: 5871_CR36
  publication-title: Southeast Eur J Soft Comput
  doi: 10.21533/scjournal.v1i2.61
SSID ssj0004685
Score 2.3731601
Snippet With the exponential growth of the amount of data being generated, stored and processed on a daily basis in the machine learning, data analytics and...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 11861
SubjectTerms Artificial Intelligence
Artificial neural networks
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Data Mining and Knowledge Discovery
Datasets
Decision analysis
Decision making
Decision trees
Feature selection
Genetic algorithms
Image Processing and Computer Vision
Learning theory
Machine learning
Original Article
Parallel processing
Preprocessing
Probability and Statistics in Computer Science
Support vector machines
SummonAdditionalLinks – databaseName: Advanced Technologies & Aerospace Database
  dbid: P5Z
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagMLBQnqK85IENLPKw43RCCIGYqg4gVSyRY58LKLRAU34_PtehgEQXhixJ7ET6zr7P9t19hJxwiA0At8wkccY4t4opXhqWG2ujzESG85nYhOz18sGg2w8bbpMQVtnMiX6iNmONe-TnzjWnIssdXbh4fWOoGoWnq0FCY5msYJUElG7oi4dveZFektOtYDC6h6chacanzuF-qLuLl3CLBiZ-OqY52_x1QOr9zk37v3-8QdYD46SXMxPZJEsw2iLtRs2BhsG9TZ6RDU7fgU68NI7Di2JQ_JDqajw1DN2doVgpvKqgos7uMP2Rqmrovlk_vlDHfunTCHM4sKmBOnSCMaiuD0fSMSrJG8IOub-5vru6ZUGJgWk3RGumgZcCtMyNjCAT3VgZq7jzfWCxfoyWVoJIbGTB0V9Uxot1rMqUlxK62kCa7pLWaDyCPUJVlOks0blQEXBQSVcnkZFSpspy69hDh8QNDIUOZcpRLaMqvgose-iKCC-ErhAdcvrV5nVWpGPh24cNXkUYsJNiDlaHnDWIzx__3dv-4t4OyFrijQyj0g5Jy6EAR2RVf9RPk_djb66fB_jyMw
  priority: 102
  providerName: ProQuest
Title Feature selection using cloud-based parallel genetic algorithm for intrusion detection data classification
URI https://link.springer.com/article/10.1007/s00521-021-05871-5
https://www.proquest.com/docview/2563568522
Volume 33
WOSCitedRecordID wos000629917800004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: P5Z
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: BENPR
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLYYcODCGzEeUw7cIFIfSdMdAQ1xmiZemrhUWeKMobKhbfD7ibt2PARIcMipiVXFdv2lsf0BHAkMLaJw3EZhwoVwmmvRszy1zgWJDawQM7IJ1W6n3W6zUxaFTaps9-pKsvhSz4vd6A-mP_rSkB7mc1mDJR_uUiJsuLq--1ANWRBx-nML5fSIuCyV-V7G53D0jjG_XIsW0eZi7X_vuQ6rJbpkpzNz2IAFHG7CWsXcwEpH3oJHQn4vY2STggbH64ZRAnyfmXz0YjmFNsuoK3ieY868jVGpI9N5fzQeTB-emEe6bDCkeg1aanFaCqF8Uy_DA3LKQCqUvg23F62b80tesi5w491xyg2KnkSjUqsCTGQz1NZp4eMcOuoVY5RTKCMXOPRQl1jwQhPqXix6CpvGYhzvwOJwNMRdYDpITBKZVOoABeqoaaLAKqVi7YTzSKEOYbX5mSlbkhMzRp7NmykXm5kFNGgzM1mH4_ma51lDjl9nH1Q6zUrnnGQe5cXSG0kU1eGk0uH745-l7f1t-j6sRIUZUEbaASx6reAhLJvX6WAybsDSWavduWpArSPvG4UJvwE0GOqZ
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB1VLRJcKJ9iSwEf4AQWjteOsweEEFC1aln1UKSKS_Da41KU7pbutlX_FL-RGW_SBSR664GDL0k8kuPn8Yw9Mw_gucEiIpokoy5KaUzy0ptRlFVMSZVRRWPmZBNuOKz29we7S_Czy4XhsMpOJ2ZFHSeBz8hf09bct2VF5sLb4x-SWaP4drWj0JjDYhsvzsllm77Z-kDz-0LrjY977zdlyyogA8FtJgOakcXgqugUlnZQ-Ji8IT2OiWuhBJccWp1UQjLlmOWtCIUf9c3I4SBE5ANQUvkrxmjFq2jXfvktDzNTgJLHxNFEpt8m6eRUPT5_pafcLDkp0v65ES6s278uZPM-t7H6v_2hO3C7tajFu_kSuAtLOL4Hqx1bhWiV1334ztbu6QmKaab-ITwKDvo_EKGZnEbJ23kUXAm9abARtK44vVP45oDGOPt2JMi6F4djzlHhrhFnrRCOsSUZ5IRw1FUG-gP4fC0jfgjL48kYH4HwqgylDpX1Cg16PQhaRedc3yeTyDrqQdFNex3aMuzMBtLUlwWkM1RqxY2hUtsevLzsczwvQnLl1-sdPupWIU3rBTh68KpD2OL1v6WtXS3tGdzc3Pu0U-9sDbcfwy2dAc4ReOuwTDOCT-BGOJsdTk-e5qUi4Ot1I-8XPndRKA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB1BQYgLZRVl9YEbWGRx4vaIgAoEqpBYxC1y7XEpCilqA9-PJ03KIkBCHHxKPIo8Y81z_N4MwJ5A3yAKy03gx1wIq7gSXcObxlovNp4RYtxsQnY6zfv71tUHFX_Bdq-uJMeaBqrSlOWHz8YeToRv9DfTHYNpRA7y82gaZgQR6em8fn33QRlZNOV0Zxji94iwlM18b-NzanrHm1-uSIvM067__5sXYaFEnexoHCZLMIXZMtSrjg6s3OAr8EiI8GWIbFS0x3E-Y0SM7zGdDl4Mp5RnGFULT1NMmYs9kkAylfYGw37-8MQcAmb9jHQcNNVgXhohHqqz4YA6MZOKYFiF2_bpzfEZL7sxcO22ac41im6EWjaN9DCOWr4yVgmX_9BSDRktrcQosJ5FB4GpO56vfdUNRVdiSxsMwzWoZYMM14EpL9ZxoJuR8lCgClo68IyUMlRWWIcgGuBXjkh0WaqcOmakyaTIcrGYiUeDFjOJGrA_mfM8LtTx69tblX-TctOOEof-wsgFTBA04KDy5_vjn61t_O31XZi7Omknl-edi02YD4qIINLaFtScg3AbZvVr3h8Nd4pYfgO6YfPH
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Feature+selection+using+cloud-based+parallel+genetic+algorithm+for+intrusion+detection+data+classification&rft.jtitle=Neural+computing+%26+applications&rft.au=Mehanovi%C4%87%2C+D%C5%BEelila&rft.au=Ke%C4%8Do%2C+Dino&rft.au=Kevri%C4%87%2C+Jasmin&rft.au=Juki%C4%87%2C+Samed&rft.date=2021-09-01&rft.pub=Springer+London&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=33&rft.issue=18&rft.spage=11861&rft.epage=11873&rft_id=info:doi/10.1007%2Fs00521-021-05871-5&rft.externalDocID=10_1007_s00521_021_05871_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon