Towards an open university based on machine learning for the teaching service support system using backpropagation neural networks
The combination of information technology and machine learning fuels the rapid evolution of today's educational landscape. Revolutions in both fields and a common goal of improving education drive this transformative journey. In a time when resources and information are more readily available t...
Gespeichert in:
| Veröffentlicht in: | Soft computing (Berlin, Germany) Jg. 28; H. 5; S. 4531 - 4549 |
|---|---|
| 1. Verfasser: | |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.03.2024
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 1432-7643, 1433-7479 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The combination of information technology and machine learning fuels the rapid evolution of today's educational landscape. Revolutions in both fields and a common goal of improving education drive this transformative journey. In a time when resources and information are more readily available than ever, traditional teaching strategies are changing to include digital tools that meet the various needs of students. For a teaching services support system (TSS), this paper proposed a novel machine learning-based model that utilizes the powerful backpropagation (BP) neural network, well known for its machine learning and data analysis capabilities. Increasing the effectiveness of online learning is the primary objective of the TSS, which focuses on contributing to a complete learning environment and promoting self-directed learning. This work closely examines the construction and functionality of the BP neural network within the TSS, contribution visions into input–output mechanisms, activation functions, and weight coefficients. This novel approach can bring concerning a digital age educational revolution by increasing the effectiveness and caliber of online learning, rekindling students’ enthusiasm for learning, and making the best use of teaching resources. In addition, the research explores the field of data-mining-based online teaching support services in Open Universities. It clarifies the system’s architecture, which includes virtual teaching modules, resource management, and user authentication. Machine learning methods such as adaptive genetic algorithms and BP neural networks optimize the system’s architecture. Experimental results achieved remarkable BP neural network accuracy and stability, significantly enhancing instructional quality and student engagement. The results show an impressive 83.4% accuracy, outperforming traditional methods such as SVM, KNN, DT, RF, and XGBoost. This demonstrates how learning outcomes and productivity can be enhanced by incorporating machine learning into education. |
|---|---|
| AbstractList | The combination of information technology and machine learning fuels the rapid evolution of today's educational landscape. Revolutions in both fields and a common goal of improving education drive this transformative journey. In a time when resources and information are more readily available than ever, traditional teaching strategies are changing to include digital tools that meet the various needs of students. For a teaching services support system (TSS), this paper proposed a novel machine learning-based model that utilizes the powerful backpropagation (BP) neural network, well known for its machine learning and data analysis capabilities. Increasing the effectiveness of online learning is the primary objective of the TSS, which focuses on contributing to a complete learning environment and promoting self-directed learning. This work closely examines the construction and functionality of the BP neural network within the TSS, contribution visions into input–output mechanisms, activation functions, and weight coefficients. This novel approach can bring concerning a digital age educational revolution by increasing the effectiveness and caliber of online learning, rekindling students’ enthusiasm for learning, and making the best use of teaching resources. In addition, the research explores the field of data-mining-based online teaching support services in Open Universities. It clarifies the system’s architecture, which includes virtual teaching modules, resource management, and user authentication. Machine learning methods such as adaptive genetic algorithms and BP neural networks optimize the system’s architecture. Experimental results achieved remarkable BP neural network accuracy and stability, significantly enhancing instructional quality and student engagement. The results show an impressive 83.4% accuracy, outperforming traditional methods such as SVM, KNN, DT, RF, and XGBoost. This demonstrates how learning outcomes and productivity can be enhanced by incorporating machine learning into education. |
| Author | Wang, Jianjun |
| Author_xml | – sequence: 1 givenname: Jianjun surname: Wang fullname: Wang, Jianjun email: wjj73@163.com organization: School of Fine Arts and Design, Leshan Normal University |
| BookMark | eNp9kM1qHDEQhEVwILaTF8hJ4PM4GmlXMzoG49gBQy7OWfRIPWvtjzRRa2z2mie3djcQ8MGnbqj6uou6YGcxRWTsayuuWyG6byTEUohGyEUjjFam0R_YebtQqukWnTk77rLp9EJ9YhdEayFk2y3VOfv7mF4ge-IQeZow8jmGZ8wUyp4PQOh5inwH7ilE5FuEHENc8TFlXp6QFzwqK06Yn4NDTvM0pVw47angjs90EAdwmymnCVZQQj0Xcc6wraO8pLyhz-zjCFvCL__mJfv94_bx5r55-HX38-b7Q-NUa0rjPPbaQE2uwYwetPbaj0IZ3feDB6F82znRGi8G6VAOABUYe7McdJVwUJfs6nS3ZvkzIxW7TnOO9aWVRi5lX5vS1dWfXC4nooyjdaEcc5cMYWtbYQ-N21PjtjZuj43bAyrfoFMOO8j79yF1gqia4wrz_1TvUK9vhpm4 |
| CitedBy_id | crossref_primary_10_1016_j_ces_2025_122381 crossref_primary_10_1016_j_aej_2025_03_095 crossref_primary_10_1109_ACCESS_2025_3562589 crossref_primary_10_3390_fi17080366 crossref_primary_10_4018_IJITN_360650 crossref_primary_10_1038_s41598_024_61593_3 crossref_primary_10_1016_j_jrras_2025_101775 |
| Cites_doi | 10.3390/app12084073 10.1007/s11042-023-16852-2 10.1007/s00500-023-09278-3 10.1007/s40815-021-01102-0 10.3390/systems11080390 10.1109/ACCESS.2020.3011281 10.1109/MNET.011.2000458 10.1109/ACCESS.2020.3011508 10.1016/j.chbr.2023.100326 10.3390/systems11090483 10.1007/s00521-020-04958-9 10.3390/jmse10101399 10.1016/j.comcom.2022.02.002 10.1016/j.chemolab.2020.104056 10.1109/TMC.2020.3021987 10.1109/TFUZZ.2020.2972207 10.1007/s44295-023-00005-0 10.1002/asjc.2762 10.7717/peerj-cs.1400 10.1007/s00500-023-09164-y 10.1109/ACCESS.2021.3062291 10.1007/s00500-022-07323-1 10.1109/ACCESS.2019.2957206 10.1016/j.compedu.2023.104910 10.1007/s10639-022-10968-y 10.1109/TEM.2022.3153395 10.1109/TGRS.2023.3325298 10.1007/978-981-16-9423-3_15 10.1057/s41599-022-01483-z 10.15672/hujms.1017898 10.1007/978-3-031-35060-3_9 10.32604/iasc.2023.036786 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI |
| DOI | 10.1007/s00500-024-09639-6 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database AAdvanced Technologies & Aerospace Database (subscription) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition |
| DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Advanced Technologies & Aerospace Collection |
| Database_xml | – sequence: 1 dbid: P5Z name: AAdvanced Technologies & Aerospace Database (subscription) url: https://search.proquest.com/hightechjournals sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science Education |
| EISSN | 1433-7479 |
| EndPage | 4549 |
| ExternalDocumentID | 10_1007_s00500_024_09639_6 |
| GroupedDBID | -5B -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 1N0 1SB 203 29~ 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K7- KDC KOV LAS LLZTM M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P9P PF0 PT4 PT5 QOS R89 R9I RIG RNI ROL RPX RSV RZK S16 S1Z S27 S3B SAP SDH SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7X Z7Y Z7Z Z81 Z83 Z88 ZMTXR AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 8FE 8FG AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQQKQ PQUKI |
| ID | FETCH-LOGICAL-c319t-cde869a0026a9fda66d6df039688bda03d17c019d0b2ce2baade8f895b63d1eb3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 8 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001152886500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1432-7643 |
| IngestDate | Wed Nov 05 04:11:41 EST 2025 Sat Nov 29 03:36:36 EST 2025 Tue Nov 18 21:26:58 EST 2025 Fri Feb 21 02:42:11 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | Teaching support service system Backpropagation neural network Development university network Adaptive genetic algorithm Machine learning |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-cde869a0026a9fda66d6df039688bda03d17c019d0b2ce2baade8f895b63d1eb3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2925284796 |
| PQPubID | 2043697 |
| PageCount | 19 |
| ParticipantIDs | proquest_journals_2925284796 crossref_citationtrail_10_1007_s00500_024_09639_6 crossref_primary_10_1007_s00500_024_09639_6 springer_journals_10_1007_s00500_024_09639_6 |
| PublicationCentury | 2000 |
| PublicationDate | 20240300 |
| PublicationDateYYYYMMDD | 2024-03-01 |
| PublicationDate_xml | – month: 3 year: 2024 text: 20240300 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationSubtitle | A Fusion of Foundations, Methodologies and Applications |
| PublicationTitle | Soft computing (Berlin, Germany) |
| PublicationTitleAbbrev | Soft Comput |
| PublicationYear | 2024 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | Inayat, Khan, Iqbal, Khan, Raza, Khan, Khan, Wei (CR16) 2021; 9 Chen, Chen, Huang, Zhai (CR7) 2022; 2022 Lu, Liu, Yin, Yin, Liu, Zheng (CR28) 2023; 9 Niu, Li, Zhang, Xu (CR31) 2023; 1 Liu, Shi, Zhou, Liu, Yin, Yin, Zheng (CR27) 2023; 10 Guo, Zhou, Lu, Zhang (CR12) 2022; 187 CR17 Liu, Zhou, Kong, Yin, Li, Yin, Zheng (CR25) 2023; 11 CR39 Qian, Zheng, Li, Ma, Zhou, Zhang (CR33) 2022; 12 Hossain, Muhammad, Guizani (CR13) 2020; 34 Khan, Khan, Iqbal, Li, Khan (CR18) 2020; 8 CR34 CR10 Huang, Han, Li, Wang, Zhao (CR14) 2021; 37 Zheng, Lv, Qian, Liu (CR40) 2022; 10 Liu, Wang, Lu, Yin, Li, Yin, Tian, Zheng (CR26) 2023; 11 Ali, Yin, Bilal (CR1) 2023 Zhenhua, Ullah, Li, Sheng, Majid (CR41) 2022; 26 Aslam (CR3) 2021; 23 CR4 Mohamed Hashim, Tlemsani, Duncan Matthews (CR29) 2022; 27 Cao, Zhao, Lv, Gu, Yang, Halgamuge (CR5) 2020; 28 Li, Zhang, Piper (CR23) 2023; 12 CR24 Almaiah, Alamri, Al-Rahmi (CR2) 2019; 7 Khan, Khan, Iqbal, Khan, Chou (CR19) 2020; 203 Dou, Liu, Chen (CR11) 2023; 27 Li, Li, Hoque, Xia, Tarkoma, Hui (CR22) 2020; 21 Ullah, Li, Aslam, Sheng (CR36) 2020; 8 Aslam, Qaisar, Majid, Shamrooz (CR30) 2023; 25 Huang, Tu, Han, Jiang, Wu, Jiang (CR15) 2023; 207 Li, Sun (CR21) 2021; 33 Wu, Li, Wang (CR38) 2023; 27 N Inayat (9639_CR16) 2021; 9 G Chen (9639_CR7) 2022; 2022 MA Mohamed Hashim (9639_CR29) 2022; 27 L Qian (9639_CR33) 2022; 12 R Ullah (9639_CR36) 2020; 8 S Khan (9639_CR18) 2020; 8 F Guo (9639_CR12) 2022; 187 M Ali (9639_CR1) 2023 T Li (9639_CR22) 2020; 21 MA Almaiah (9639_CR2) 2019; 7 9639_CR24 X Li (9639_CR21) 2021; 33 MS Aslam (9639_CR30) 2023; 25 H Niu (9639_CR31) 2023; 1 M Zhenhua (9639_CR41) 2022; 26 H Dou (9639_CR11) 2023; 27 X Liu (9639_CR26) 2023; 11 X Liu (9639_CR27) 2023; 10 9639_CR4 MS Hossain (9639_CR13) 2020; 34 Y Zheng (9639_CR40) 2022; 10 S Khan (9639_CR19) 2020; 203 9639_CR17 9639_CR39 Q Wu (9639_CR38) 2023; 27 MS Aslam (9639_CR3) 2021; 23 C Huang (9639_CR15) 2023; 207 9639_CR10 9639_CR34 B Cao (9639_CR5) 2020; 28 S Lu (9639_CR28) 2023; 9 C Huang (9639_CR14) 2021; 37 X Liu (9639_CR25) 2023; 11 L Li (9639_CR23) 2023; 12 |
| References_xml | – volume: 12 start-page: 4073 issue: 8 year: 2022 ident: CR33 article-title: A new method of inland water ship trajectory prediction based on long short-term memory network optimized by genetic algorithm publication-title: Appl Sci doi: 10.3390/app12084073 – year: 2023 ident: CR1 article-title: Advanced efficient strategy for detection of dark objects based on spiking network with multi-box detection publication-title: Multimed Tools Appl doi: 10.1007/s11042-023-16852-2 – ident: CR4 – ident: CR39 – volume: 27 start-page: 18195 year: 2023 end-page: 18213 ident: CR38 article-title: Regional feature fusion for on-road detection of objects using camera and 3D-LiDAR in high-speed autonomous vehicles publication-title: Soft Comput doi: 10.1007/s00500-023-09278-3 – volume: 23 start-page: 2297 issue: 7 year: 2021 end-page: 2308 ident: CR3 article-title: L –L control for delayed singular Markov switch system with nonlinear actuator faults publication-title: Int J Fuzzy Syst doi: 10.1007/s40815-021-01102-0 – volume: 11 start-page: 390 issue: 8 year: 2023 ident: CR25 article-title: Developing multi-labelled corpus of twitter short texts: a semi-automatic method publication-title: Systems doi: 10.3390/systems11080390 – volume: 8 start-page: 134276 year: 2020 end-page: 134289 ident: CR36 article-title: Event-triggered dissipative observer-based control for delay dependent T-S fuzzy singular systems publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3011281 – volume: 34 start-page: 126 issue: 4 year: 2020 end-page: 132 ident: CR13 article-title: Explainable AI and mass surveillance system-based healthcare framework to combat COVID-I9 like pandemics publication-title: IEEE Netw doi: 10.1109/MNET.011.2000458 – ident: CR10 – volume: 37 start-page: 81 issue: 2 year: 2021 end-page: 95 ident: CR14 article-title: Sentiment evolution with interaction levels in blended learning environments: using learning analytics and epistemic network analysis publication-title: J Educ Technol – volume: 8 start-page: 136978 year: 2020 end-page: 136991 ident: CR18 article-title: Spark-based parallel deep neural network model for classification of large scale RNAs into piRNAs and non-piRNAs publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3011508 – volume: 12 year: 2023 ident: CR23 article-title: Predictors of student engagement and perceived learning in emergency online education amidst COVID-19: a community of inquiry perspective publication-title: Comput Hum Behav Rep doi: 10.1016/j.chbr.2023.100326 – volume: 10 start-page: 1 issue: 1 year: 2023 end-page: 9 ident: CR27 article-title: Emotion classification for short texts: an improved multi-label method publication-title: Humanit Soc Sci Commun – volume: 11 start-page: 483 issue: 9 year: 2023 ident: CR26 article-title: Adapting feature selection algorithms for the classification of Chinese texts publication-title: Systems doi: 10.3390/systems11090483 – volume: 33 start-page: 8227 year: 2021 end-page: 8235 ident: CR21 article-title: Application of RBF neural network optimal segmentation algorithm in credit rating publication-title: Neural Comput Appl doi: 10.1007/s00521-020-04958-9 – volume: 10 start-page: 1399 issue: 10 year: 2022 ident: CR40 article-title: An optimal BP neural network track prediction method based on a GA–ACO hybrid algorithm publication-title: J Mar Sci Eng doi: 10.3390/jmse10101399 – volume: 187 start-page: 83 year: 2022 end-page: 92 ident: CR12 article-title: Path extension similarity link prediction method based on matrix algebra in directed networks publication-title: Comput Commun doi: 10.1016/j.comcom.2022.02.002 – volume: 203 year: 2020 ident: CR19 article-title: Prediction of piRNAs and their function based on discriminative intelligent model using hybrid features into Chou’s PseKNC publication-title: Chemom Intell Lab Syst doi: 10.1016/j.chemolab.2020.104056 – volume: 21 start-page: 1492 issue: 4 year: 2020 end-page: 1507 ident: CR22 article-title: To what extent we repeat ourselves? Discovering daily activity patterns across mobile app usage publication-title: IEEE Trans Mob Comput doi: 10.1109/TMC.2020.3021987 – volume: 28 start-page: 939 issue: 5 year: 2020 end-page: 952 ident: CR5 article-title: Multiobjective evolution of fuzzy rough neural network via distributed parallelism for stock prediction publication-title: IEEE Trans Fuzzy Syst doi: 10.1109/TFUZZ.2020.2972207 – volume: 1 start-page: 8 issue: 1 year: 2023 ident: CR31 article-title: Advances and applications of machine learning in underwater acoustics publication-title: Intell Mar Technol Syst doi: 10.1007/s44295-023-00005-0 – volume: 25 start-page: 213 issue: 1 year: 2023 end-page: 228 ident: CR30 article-title: Adaptive event-triggered robust H∞ control for Takagi–Sugeno fuzzy networked Markov jump systems with time-varying delay publication-title: Asian J Control doi: 10.1002/asjc.2762 – volume: 9 year: 2023 ident: CR28 article-title: The multi-modal fusion in visual question answering: a review of attention mechanisms publication-title: PeerJ Comput Sci doi: 10.7717/peerj-cs.1400 – ident: CR17 – volume: 2022 start-page: 1 year: 2022 end-page: 12 ident: CR7 article-title: Continuance intention mechanism of middle school student users on online learning platform based on qualitative comparative analysis method publication-title: Math Probl Eng – volume: 27 start-page: 16373 year: 2023 end-page: 16388 ident: CR11 article-title: A hybrid CEEMD-GMM scheme for enhancing the detection of traffic flow on highways publication-title: Soft Comput doi: 10.1007/s00500-023-09164-y – ident: CR34 – volume: 9 start-page: 40783 year: 2021 end-page: 40796 ident: CR16 article-title: iEnhancer-DHF: identification of enhancers and their strengths using optimize deep neural network with multiple features extraction methods publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3062291 – volume: 26 start-page: 7159 issue: 15 year: 2022 end-page: 7166 ident: CR41 article-title: Stability and admissibility analysis of T-S descriptive systems and its applications publication-title: Soft Comput doi: 10.1007/s00500-022-07323-1 – volume: 7 start-page: 174673 year: 2019 end-page: 174686 ident: CR2 article-title: Applying the UTAUT model to explain the students’ acceptance of mobile learning system in higher education publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2957206 – volume: 207 year: 2023 ident: CR15 article-title: Examining the relationship between peer feedback classified by deep learning and online learning burnout publication-title: Comput Educ doi: 10.1016/j.compedu.2023.104910 – ident: CR24 – volume: 27 start-page: 8961 issue: 7 year: 2022 end-page: 8996 ident: CR29 article-title: A sustainable university: digital transformation and beyond publication-title: Educ Inf Technol doi: 10.1007/s10639-022-10968-y – volume: 9 start-page: 40783 year: 2021 ident: 9639_CR16 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3062291 – volume: 2022 start-page: 1 year: 2022 ident: 9639_CR7 publication-title: Math Probl Eng – ident: 9639_CR34 doi: 10.1109/TEM.2022.3153395 – volume: 28 start-page: 939 issue: 5 year: 2020 ident: 9639_CR5 publication-title: IEEE Trans Fuzzy Syst doi: 10.1109/TFUZZ.2020.2972207 – volume: 26 start-page: 7159 issue: 15 year: 2022 ident: 9639_CR41 publication-title: Soft Comput doi: 10.1007/s00500-022-07323-1 – volume: 21 start-page: 1492 issue: 4 year: 2020 ident: 9639_CR22 publication-title: IEEE Trans Mob Comput doi: 10.1109/TMC.2020.3021987 – volume: 12 start-page: 4073 issue: 8 year: 2022 ident: 9639_CR33 publication-title: Appl Sci doi: 10.3390/app12084073 – volume: 203 year: 2020 ident: 9639_CR19 publication-title: Chemom Intell Lab Syst doi: 10.1016/j.chemolab.2020.104056 – volume: 33 start-page: 8227 year: 2021 ident: 9639_CR21 publication-title: Neural Comput Appl doi: 10.1007/s00521-020-04958-9 – volume: 12 year: 2023 ident: 9639_CR23 publication-title: Comput Hum Behav Rep doi: 10.1016/j.chbr.2023.100326 – ident: 9639_CR39 doi: 10.1109/TGRS.2023.3325298 – volume: 27 start-page: 8961 issue: 7 year: 2022 ident: 9639_CR29 publication-title: Educ Inf Technol doi: 10.1007/s10639-022-10968-y – volume: 23 start-page: 2297 issue: 7 year: 2021 ident: 9639_CR3 publication-title: Int J Fuzzy Syst doi: 10.1007/s40815-021-01102-0 – volume: 207 year: 2023 ident: 9639_CR15 publication-title: Comput Educ doi: 10.1016/j.compedu.2023.104910 – ident: 9639_CR10 doi: 10.1007/978-981-16-9423-3_15 – volume: 10 start-page: 1 issue: 1 year: 2023 ident: 9639_CR27 publication-title: Humanit Soc Sci Commun doi: 10.1057/s41599-022-01483-z – volume: 37 start-page: 81 issue: 2 year: 2021 ident: 9639_CR14 publication-title: J Educ Technol – volume: 11 start-page: 390 issue: 8 year: 2023 ident: 9639_CR25 publication-title: Systems doi: 10.3390/systems11080390 – volume: 34 start-page: 126 issue: 4 year: 2020 ident: 9639_CR13 publication-title: IEEE Netw doi: 10.1109/MNET.011.2000458 – volume: 25 start-page: 213 issue: 1 year: 2023 ident: 9639_CR30 publication-title: Asian J Control doi: 10.1002/asjc.2762 – ident: 9639_CR4 doi: 10.15672/hujms.1017898 – volume: 187 start-page: 83 year: 2022 ident: 9639_CR12 publication-title: Comput Commun doi: 10.1016/j.comcom.2022.02.002 – volume: 1 start-page: 8 issue: 1 year: 2023 ident: 9639_CR31 publication-title: Intell Mar Technol Syst doi: 10.1007/s44295-023-00005-0 – volume: 10 start-page: 1399 issue: 10 year: 2022 ident: 9639_CR40 publication-title: J Mar Sci Eng doi: 10.3390/jmse10101399 – volume: 8 start-page: 134276 year: 2020 ident: 9639_CR36 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3011281 – volume: 27 start-page: 16373 year: 2023 ident: 9639_CR11 publication-title: Soft Comput doi: 10.1007/s00500-023-09164-y – volume: 9 year: 2023 ident: 9639_CR28 publication-title: PeerJ Comput Sci doi: 10.7717/peerj-cs.1400 – ident: 9639_CR17 doi: 10.1007/978-3-031-35060-3_9 – ident: 9639_CR24 doi: 10.32604/iasc.2023.036786 – volume: 11 start-page: 483 issue: 9 year: 2023 ident: 9639_CR26 publication-title: Systems doi: 10.3390/systems11090483 – year: 2023 ident: 9639_CR1 publication-title: Multimed Tools Appl doi: 10.1007/s11042-023-16852-2 – volume: 7 start-page: 174673 year: 2019 ident: 9639_CR2 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2957206 – volume: 8 start-page: 136978 year: 2020 ident: 9639_CR18 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3011508 – volume: 27 start-page: 18195 year: 2023 ident: 9639_CR38 publication-title: Soft Comput doi: 10.1007/s00500-023-09278-3 |
| SSID | ssj0021753 |
| Score | 2.40513 |
| Snippet | The combination of information technology and machine learning fuels the rapid evolution of today's educational landscape. Revolutions in both fields and a... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 4531 |
| SubjectTerms | Adaptive algorithms Application of Soft Computing Artificial Intelligence Back propagation networks Colleges & universities Computational Intelligence Control Data analysis Data mining Distance learning Education Effectiveness Engineering Genetic algorithms Information technology Machine learning Mathematical Logic and Foundations Mechatronics Neural networks Online instruction Resource management Robotics Students Support services Support systems Teachers Teaching Teaching machines |
| SummonAdditionalLinks | – databaseName: Computer Science Database dbid: K7- link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09T8MwELWgMLBQKCAKBd3ABhb5aBx7QghRMaCKoUjdIsdOKgSkpUn5Afxyzo7TCiS6sMaxnejOd-_s5ztCLmQ_z0Om-zSIJAYoDAMUwSQCOXTnOWNexn17UfgxHg75eCye3IZb6WiVjU20hlpPldkjvw5EEBlTKtjN7IOaqlHmdNWV0NgkW36ARtgcysZ0GXC5LJQICXBydL3u0oy9OmcSn3gUPRRFEB8Kyn46phXa_HVAav3OoP3fL94juw5xwm2tIvtkIys6pN1UcwC3uDumfrPjehyQr5Fl05YgCzD1tWCx5G-A8XsapgW8Wx5mBq7wxAQQ_wLiSagcQxPK2hBBuZgZmA912mgwXPsJjqNe8Y_QoNlJwWTWxO8sal56eUieB_ejuwfqqjVQhcu4okpnnAlpgjopci0Z00znXigY56mWXqj9WCGg1F4aqCxIpcQOORdRyrAJY_oj0iqmRXZMIFbaw0dh6Pc1xn-Sh5LHcRoxHZhsN16X-I2oEuVSmZuKGm_JMgmzFW-C4k2seBPWJZfLPrM6kcfat3uNTBO3qMtkJdAuuWq0YtX892gn60c7JTuBVUTDbOuRVjVfZGdkW31WL-X83Kr0N8y-_XY priority: 102 providerName: ProQuest |
| Title | Towards an open university based on machine learning for the teaching service support system using backpropagation neural networks |
| URI | https://link.springer.com/article/10.1007/s00500-024-09639-6 https://www.proquest.com/docview/2925284796 |
| Volume | 28 |
| WOSCitedRecordID | wos001152886500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: AAdvanced Technologies & Aerospace Database (subscription) customDbUrl: eissn: 1433-7479 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0021753 issn: 1432-7643 databaseCode: P5Z dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1433-7479 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0021753 issn: 1432-7643 databaseCode: K7- dateStart: 20090101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1433-7479 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0021753 issn: 1432-7643 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: Springer Journals New Starts & Take-Overs Collection customDbUrl: eissn: 1433-7479 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0021753 issn: 1432-7643 databaseCode: RSV dateStart: 19970401 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB7U9aAH1yc-1mUO3rTQxzZtjiorgrIsuop4KWnTLqJ2xXb9Af5yJ2laH6iglx6aR9NkkvmGzHwDsCd6WeYx2bNcX5CBwshA4UwQkCN1njFmp6GjA4XPg8EgvLnhQxMUVtTe7vWVpD6pm2A3RVViW6RTLILdHrfYLLR8xTajbPTL68bMMtyTBATok6RwTajM9318VkfvGPPLtajWNift_41zGZYMusTDShxWYCbNV6FdZ25As5FXYfEDDeEavI6072yBIkeVTQunjbcGKi0ncZLjo_a6TNGkmRgjoV0k9Iil8cfEojp2sJg-KVCPFUk0Ks_6MfWT3NN_0_GlRQEVjyaNNK-80It1uDrpj45PLZObwUpo05ZWItOQcaFMOMEzKRiTTGa2x1kYxlLYnnSChOCjtGM3Sd1YCGqQhdyPGRWRBb8Bc_kkTzcBg0Ta9MrznJ4ka0-EngiDIPaZdBW3jb0FTr1EUWKIy1X-jIeooVzWUx7RlEd6yiO2BftNm6eKtuPX2p165SOzhYvI5a6vdDen4oN6pd-Lf-5t-2_Vd2DB1cKi_No6MFc-T9NdmE9eyrviuQuto_5geNGF2bPAoufQv-1qcX8DCgL31w |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9tAEB5BqASXBmirpgQ6BzgVq87aXnsPFeIpECFCVZC4uetdG1WlToqTVlz7g_obO7teJyoS3Dj0anvH9vrbmfm88wDYlmFRBFyHHoskERROBEVwSY4cmfOCcz9PejZRuB8PBsn1tbhcgD9NLowJq2x0olXUeqTMP_KPTLDIqFLB98Y_PNM1yuyuNi00alic5_e_iLJVn86O6PvuMHZyPDw89VxXAU8R3Cae0nnChTTkQ4pCS84114UfCJ4kmZZ-oHuxIsdH-xlTOcukpAFFIqKM0yniniR3EZbCIORRC5YOjgeXn2cUz9W9JCeEXpeMvUvTscl6ptSK75FN9Ig2BMLj_5rCuX_7YEvWWrqT9v82R6vw0vnUuF8vgjVYyMt1aDf9KtCpr3XTodpFs7yC30MbL1yhLNF0EMPpLEIFjWXXOCrxu400zdG11rhB8vCRPGacuBhUrGpVi9V0bIgM1oWx0WQT3JAc9Y1mkFS2vSma2qH0nGUdeV-9hqtnmZU30CpHZf4WMFbap0NB0As1MVyZBDKJ4yzimpl6Pn4Heg00UuWKtZueIbfprMy0hVNKcEotnFLegQ-zMeO6VMmTV3cbDKVObVXpHEAd2G1QOD_9uLR3T0t7D8unw4t-2j8bnG_ACrOLwMTxdaE1uZvmm_BC_Zx8re623IJC-PLc-PwLonZfFA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB2xCcGBpYBYCsyBG0RkaZ34iIAKBKoqNvUWOXFSISCtSMoH8OWMHScsAiTENV5iOWPPG-XNG4A90UpTj8mW5bYFBSiMAhTOBAE5cucpY3YSODpR-NLvdoN-n_c-ZPFrtnv1S7LMaVAqTVlxOJLpYZ34pmRLbIv8i0UQ3OMWm4TpFkUyitR1dX1Xh1xGh5JAAb2enK9Jm_l-js-u6R1vfvlFqj1PZ_H_a16CBYM68ag0k2WYSLIGLFYVHdAc8AbMf5AnXIHXG82pzVFkqKps4bhmcaDyfhKHGT5pNmaCpvzEAAkFI6FKLAxPE_PyOsJ8PFJgH0vxaFSM-wHNEz_QHtC1pk0Elb4mrTQr2en5Ktx2Tm-OzyxTs8GK6TAXViyTgHGhQjvBUykYk0ymtsdZEERS2J50_JhgpbQjN07cSAgakAa8HTFqosh-DaayYZasA_qxtOmR5zktSVGgCDwR-H7UZtJVmjf2BjjV5wpjI2iu6mo8hrUUs97ykLY81Fsesg3Yr8eMSjmPX3s3KysIzdHOQ5e7beXTOTUfVF_9vfnn2Tb_1n0XZnsnnfDyvHuxBXOuthtFfWvCVPE8TrZhJn4p7vPnHW3xb-IlAEQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Towards+an+open+university+based+on+machine+learning+for+the+teaching+service+support+system+using+backpropagation+neural+networks&rft.jtitle=Soft+computing+%28Berlin%2C+Germany%29&rft.au=Wang%2C+Jianjun&rft.date=2024-03-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1432-7643&rft.eissn=1433-7479&rft.volume=28&rft.issue=5&rft.spage=4531&rft.epage=4549&rft_id=info:doi/10.1007%2Fs00500-024-09639-6&rft.externalDocID=10_1007_s00500_024_09639_6 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1432-7643&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1432-7643&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1432-7643&client=summon |