Towards the theory of strong minimum in calculus of variations and optimal control: a view from variational analysis

The paper offers a self-contained account of the theory of first and second order necessary conditions for optimal control problems (with state constraints) based on new principles coming from variational analysis. The key element of the theory is reduction of the problem to unconstrained minimizati...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Calculus of variations and partial differential equations Ročník 59; číslo 2
Hlavní autor: Ioffe, A. D.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.04.2020
Springer Nature B.V
Témata:
ISSN:0944-2669, 1432-0835
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The paper offers a self-contained account of the theory of first and second order necessary conditions for optimal control problems (with state constraints) based on new principles coming from variational analysis. The key element of the theory is reduction of the problem to unconstrained minimization of a Bolza-type functional with necessarily non-differentiable integrand and off-integral term. This allows to substantially shorten and simplify the proofs and to get new results not detected earlier by traditional variational techniques. This includes a totally new and easily verifiable second order necessary condition for a strong minimum in the classical problem of calculus of variations. The condition is a consequence of a new and more general second order necessary condition for optimal control problems with state constraints. Simple examples show that the new conditions may work when all known necessary conditions fail.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0944-2669
1432-0835
DOI:10.1007/s00526-020-01736-2