Integrating deep learning into CAD/CAE system: generative design and evaluation of 3D conceptual wheel
Engineering design research integrating artificial intelligence (AI) into computer-aided design (CAD) and computer-aided engineering (CAE) is actively being conducted. This study proposes a deep learning-based CAD/CAE framework in the conceptual design phase that automatically generates 3D CAD desig...
Uloženo v:
| Vydáno v: | Structural and multidisciplinary optimization Ročník 64; číslo 4; s. 2725 - 2747 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.10.2021
Springer Nature B.V |
| Témata: | |
| ISSN: | 1615-147X, 1615-1488 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Engineering design research integrating artificial intelligence (AI) into computer-aided design (CAD) and computer-aided engineering (CAE) is actively being conducted. This study proposes a deep learning-based CAD/CAE framework in the conceptual design phase that automatically generates 3D CAD designs and evaluates their engineering performance. The proposed framework comprises seven stages: (1) 2D generative design, (2) dimensionality reduction, (3) design of experiment in latent space, (4) CAD automation, (5) CAE automation, (6) transfer learning, and (7) visualization and analysis. The proposed framework is demonstrated through a road wheel design case study and indicates that AI can be practically incorporated into an end-use product design project. Engineers and industrial designers can jointly review a large number of generated 3D CAD models by using this framework along with the engineering performance results estimated by AI and find conceptual design candidates for the subsequent detailed design stage. |
|---|---|
| AbstractList | Engineering design research integrating artificial intelligence (AI) into computer-aided design (CAD) and computer-aided engineering (CAE) is actively being conducted. This study proposes a deep learning-based CAD/CAE framework in the conceptual design phase that automatically generates 3D CAD designs and evaluates their engineering performance. The proposed framework comprises seven stages: (1) 2D generative design, (2) dimensionality reduction, (3) design of experiment in latent space, (4) CAD automation, (5) CAE automation, (6) transfer learning, and (7) visualization and analysis. The proposed framework is demonstrated through a road wheel design case study and indicates that AI can be practically incorporated into an end-use product design project. Engineers and industrial designers can jointly review a large number of generated 3D CAD models by using this framework along with the engineering performance results estimated by AI and find conceptual design candidates for the subsequent detailed design stage. |
| Author | Lee, Sunghee Kim, Seongsin Kang, Namwoo Park, Jong Ho Hwang, Kwang Hyeon Yoo, Soyoung |
| Author_xml | – sequence: 1 givenname: Soyoung surname: Yoo fullname: Yoo, Soyoung organization: Department of Mechanical Systems Engineering, Sookmyung Women’s University – sequence: 2 givenname: Sunghee surname: Lee fullname: Lee, Sunghee organization: Department of Mechanical Systems Engineering, Sookmyung Women’s University – sequence: 3 givenname: Seongsin surname: Kim fullname: Kim, Seongsin organization: Department of Mechanical Systems Engineering, Sookmyung Women’s University – sequence: 4 givenname: Kwang Hyeon surname: Hwang fullname: Hwang, Kwang Hyeon organization: Hyundai Motor Company – sequence: 5 givenname: Jong Ho surname: Park fullname: Park, Jong Ho organization: Hyundai Motor Company – sequence: 6 givenname: Namwoo orcidid: 0000-0003-3475-7477 surname: Kang fullname: Kang, Namwoo email: nwkang@kaist.ac.kr organization: The Cho Chun Shik Graduate School of Green Transportation, Korea Advanced Institute of Science and Technology |
| BookMark | eNp9kEFPwyAUx4mZidv0C3gi8VwHpS3F29JNXbLEiybeCKOvtUtHK7CZfXvZZjTxsAMBXn6_x-M_QgPTGUDolpJ7SgifOEJomkckpmGJlEXiAg1pRtOIJnk--D3z9ys0cm5NCMlJIoaoWhgPtVW-MTUuAXrcgrLmcGuM73AxnU2K6Ry7vfOwecA1GDjQOwi0a2qDlSkx7FS7DdXO4K7CbIZ1ZzT0fqta_PUB0F6jy0q1Dm5-9jF6e5y_Fs_R8uVpUUyXkWZU-EinOidUJ2VVruKSh69kealSTROdpyTjnBNFmVrxKqaglOA8i0VFWCqSOJQZG6O7U9_edp9bcF6uu6014UkZp1wkWcISEaj8RGnbOWehkrrxx_G9VU0rKZGHVOUpVRlSlcdU5UGN_6m9bTbK7s9L7CS5AJsa7N9UZ6xvIeuLeA |
| CitedBy_id | crossref_primary_10_1007_s00158_022_03485_6 crossref_primary_10_1016_j_jobe_2024_110972 crossref_primary_10_1088_1758_5090_ad8966 crossref_primary_10_1016_j_ifacol_2022_09_401 crossref_primary_10_1016_j_autcon_2024_105747 crossref_primary_10_1016_j_autcon_2024_105901 crossref_primary_10_1016_j_aei_2022_101825 crossref_primary_10_1016_j_aei_2024_102835 crossref_primary_10_1007_s00158_022_03347_1 crossref_primary_10_3390_app14093564 crossref_primary_10_3390_modelling5030066 crossref_primary_10_1007_s42452_025_06833_5 crossref_primary_10_3390_machines11060577 crossref_primary_10_1093_jcde_qwad049 crossref_primary_10_3390_electronics12081946 crossref_primary_10_1016_j_procs_2022_12_239 crossref_primary_10_1016_j_cirp_2024_06_003 crossref_primary_10_1016_j_engstruct_2025_120578 crossref_primary_10_1016_j_cad_2022_103225 crossref_primary_10_1016_j_compbiomed_2025_111118 crossref_primary_10_1007_s00158_024_03957_x crossref_primary_10_1007_s00158_024_03851_6 crossref_primary_10_3390_app14166959 crossref_primary_10_1016_j_measurement_2023_113982 crossref_primary_10_1080_09544828_2025_2558334 crossref_primary_10_1016_j_aei_2024_103045 crossref_primary_10_1007_s00466_023_02434_4 crossref_primary_10_1016_j_aei_2022_101711 crossref_primary_10_1016_j_aei_2022_101793 crossref_primary_10_1016_j_displa_2023_102623 crossref_primary_10_1007_s42791_025_00097_1 crossref_primary_10_3390_pr10020303 crossref_primary_10_1016_j_jmapro_2025_04_013 crossref_primary_10_1080_13588265_2024_2406837 crossref_primary_10_1080_09544828_2024_2362587 crossref_primary_10_1016_j_compscitech_2022_109661 crossref_primary_10_1016_j_ijhydene_2024_05_437 crossref_primary_10_1016_j_finel_2024_104122 crossref_primary_10_1016_j_ijmecsci_2025_110243 crossref_primary_10_1109_TASE_2023_3295571 crossref_primary_10_1016_j_aei_2024_103074 crossref_primary_10_1016_j_autcon_2024_105284 crossref_primary_10_3390_buildings12122194 crossref_primary_10_1007_s00158_022_03295_w crossref_primary_10_1016_j_aei_2025_103354 crossref_primary_10_1016_j_ijmecsci_2024_109736 crossref_primary_10_1155_2022_1608840 crossref_primary_10_1017_dsj_2023_25 crossref_primary_10_1016_j_eswa_2024_124928 crossref_primary_10_1007_s00170_025_15273_9 crossref_primary_10_1016_j_aei_2023_102259 crossref_primary_10_1016_j_procir_2022_05_249 crossref_primary_10_1007_s00158_022_03386_8 crossref_primary_10_1016_j_engappai_2023_107283 crossref_primary_10_1016_j_aei_2024_102892 crossref_primary_10_1016_j_cad_2023_103609 crossref_primary_10_1016_j_jii_2024_100759 crossref_primary_10_1080_08839514_2025_2453782 crossref_primary_10_3390_app142210517 crossref_primary_10_1016_j_jmsy_2025_01_012 crossref_primary_10_1017_S0890060425100140 crossref_primary_10_3390_app15052753 crossref_primary_10_4018_IJITSA_386840 crossref_primary_10_1007_s11831_025_10302_y crossref_primary_10_1061_JCCEE5_CPENG_5929 crossref_primary_10_12677_mos_2025_144337 crossref_primary_10_3390_buildings14051342 crossref_primary_10_1371_journal_pone_0327063 crossref_primary_10_3390_app15147692 crossref_primary_10_1016_j_apacoust_2025_110852 crossref_primary_10_3390_electronics14010190 crossref_primary_10_1016_j_eml_2025_102321 crossref_primary_10_3390_e27030319 crossref_primary_10_1080_17452007_2025_2527415 crossref_primary_10_3390_sym17040621 crossref_primary_10_1080_10899995_2024_2384340 crossref_primary_10_1080_09544828_2022_2164440 crossref_primary_10_1007_s40964_025_01226_x crossref_primary_10_1016_j_jmsy_2022_10_001 crossref_primary_10_1093_jcde_qwae102 crossref_primary_10_1016_j_engappai_2025_111504 crossref_primary_10_1016_j_eswa_2025_127520 |
| Cites_doi | 10.1145/3197517.3201325 10.1115/1.4044097 10.1109/4.996 10.1007/s00158-006-0087-x 10.1038/nature14539 10.1126/science.1127647 10.1016/j.cad.2018.03.006 10.1109/TKDE.2009.191 10.1016/S0045-7825(00)00278-4 10.1007/s00170-019-03363-4 10.1007/s00158-010-0594-7 10.1002/nme.116 10.1115/1.2429697 10.1162/neco_a_00990 10.1007/s10994-006-6226-1 10.1016/j.asoc.2015.10.063 10.1002/nme.1064 10.1115/1.4044199 10.1016/0045-7825(88)90086-2 10.1115/DETC2017-68192 10.1115/1.4044597 10.1080/0305215X.2010.502935 10.1109/ICCV.2015.114 10.1016/j.destud.2011.06.001 10.1145/3173574.3173943 10.1109/IROS.2015.7353481 10.1115/DETC2016-60091 10.1115/DETC2018-85506 10.1109/ICCV.2017.74 10.1016/j.autcon.2004.07.002 10.3390/designs4020010 10.1016/j.measurement.2020.108634 10.1109/CVPR.2018.00526 10.1115/1.4044229 10.1115/1.4048626 10.1145/3145749.3145758 10.1109/CVPR.2016.319 10.1016/j.cad.2010.09.009 10.1016/j.promfg.2020.02.251 10.1145/2939672.2939738 10.1609/aaai.v33i01.33018279 10.1109/DEPCOS-RELCOMEX.2006.38 10.1145/800248.807360 10.1002/qre.1924 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021. |
| DBID | AAYXX CITATION 8FE 8FG ABJCF AFKRA BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| DOI | 10.1007/s00158-021-02953-9 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland ProQuest Central Technology collection ProQuest One Community College ProQuest Central Korea SciTech Premium Collection ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
| DatabaseTitle | CrossRef Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest One Academic ProQuest Central (New) Engineering Collection ProQuest One Academic (New) |
| DatabaseTitleList | Engineering Database |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1615-1488 |
| EndPage | 2747 |
| ExternalDocumentID | 10_1007_s00158_021_02953_9 |
| GrantInformation_xml | – fundername: Hyundai Motor Group funderid: http://dx.doi.org/10.13039/100008256 – fundername: National Research Foundation of Korea grantid: 2017R1C1B2005266; 2018R1A5A7025409 funderid: http://dx.doi.org/10.13039/501100003725 |
| GroupedDBID | -5B -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 123 199 1N0 2.D 203 29Q 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 78A 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHIR ADINQ ADKNI ADKPE ADPHR ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AOCGG ARCEE ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV L6V LAS LLZTM M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P9P PF0 PT4 PT5 PTHSS QOK QOS R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7X Z7Y Z7Z Z81 Z83 Z85 Z86 Z88 Z8M Z8N Z8P Z8R Z8S Z8T Z8U Z8W Z8Z Z92 ZMTXR _50 ~02 AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB DWQXO PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c319t-c5c801c4dfdb2d702968da5c14c85067770a13ab7f21eaa977629f0359423ab33 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 110 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000661442500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1615-147X |
| IngestDate | Wed Nov 05 00:47:39 EST 2025 Sat Nov 29 02:50:17 EST 2025 Tue Nov 18 21:34:51 EST 2025 Fri Feb 21 02:47:13 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Deep learning Topology optimization Generative design Artificial intelligence CAE CAD |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-c5c801c4dfdb2d702968da5c14c85067770a13ab7f21eaa977629f0359423ab33 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-3475-7477 |
| PQID | 2579464349 |
| PQPubID | 2043658 |
| PageCount | 23 |
| ParticipantIDs | proquest_journals_2579464349 crossref_citationtrail_10_1007_s00158_021_02953_9 crossref_primary_10_1007_s00158_021_02953_9 springer_journals_10_1007_s00158_021_02953_9 |
| PublicationCentury | 2000 |
| PublicationDate | 20211000 2021-10-00 20211001 |
| PublicationDateYYYYMMDD | 2021-10-01 |
| PublicationDate_xml | – month: 10 year: 2021 text: 20211000 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationTitle | Structural and multidisciplinary optimization |
| PublicationTitleAbbrev | Struct Multidisc Optim |
| PublicationYear | 2021 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | CR39 Bourdin (CR8) 2001; 50 CR37 CR36 Ahmed, Deb, Bhattacharya (CR1) 2016; 39 CR35 CR34 CR30 Guest, Prévost, Belytschko (CR18) 2004; 61 Pan, Yang (CR41) 2009; 22 Maaten, Hinton (CR32) 2008; 9 CR2 CR3 CR6 CR5 CR7 CR49 CR48 CR47 Hinton, Salakhutdinov (CR20) 2006; 313 CR45 CR44 CR42 Umetani, Bickel (CR53) 2018; 37 CR40 Geurts, Ernst, Wehenkel (CR17) 2006; 63 Andreassen, Clausen, Schevenels, Lazarov, Sigmund (CR4) 2011; 43 Khadilkar, Wang, Rai (CR27) 2019; 102 Nie, Jiang, Kara (CR38) 2020; 20 CR19 CR16 CR15 CR14 CR58 CR13 CR12 CR56 Zhang, Jaiswal, Rai (CR57) 2018; 101 CR11 CR10 LeCun, Bengio, Hinton (CR31) 2015; 521 CR54 CR52 CR51 CR50 Kanopoulos, Vasanthavada, Baker (CR26) 1988; 23 Bruns, Tortorelli (CR9) 2001; 190 Masci, Meier, Cireşan, Schmidhuber (CR33) 2011 Rawat, Wang (CR43) 2017; 29 CR29 CR28 Wang, Shan (CR55) 2007 CR25 CR24 Sigmund (CR46) 2007; 33 CR23 CR22 CR21 2953_CR47 2953_CR48 2953_CR49 2953_CR44 2953_CR45 2953_CR40 TE Bruns (2953_CR9) 2001; 190 2953_CR42 P Geurts (2953_CR17) 2006; 63 F Ahmed (2953_CR1) 2016; 39 2953_CR2 2953_CR14 2953_CR58 2953_CR15 2953_CR16 2953_CR3 2953_CR6 2953_CR10 2953_CR54 2953_CR5 2953_CR11 2953_CR12 2953_CR56 2953_CR7 2953_CR13 2953_CR50 N Kanopoulos (2953_CR26) 1988; 23 2953_CR51 2953_CR52 B Bourdin (2953_CR8) 2001; 50 W Rawat (2953_CR43) 2017; 29 N Umetani (2953_CR53) 2018; 37 GG Wang (2953_CR55) 2007 2953_CR19 O Sigmund (2953_CR46) 2007; 33 2953_CR25 2953_CR28 LVD Maaten (2953_CR32) 2008; 9 2953_CR21 2953_CR22 2953_CR23 GE Hinton (2953_CR20) 2006; 313 2953_CR24 JK Guest (2953_CR18) 2004; 61 Z Zhang (2953_CR57) 2018; 101 Z Nie (2953_CR38) 2020; 20 2953_CR29 SJ Pan (2953_CR41) 2009; 22 2953_CR36 2953_CR37 2953_CR39 2953_CR34 2953_CR35 2953_CR30 Y LeCun (2953_CR31) 2015; 521 J Masci (2953_CR33) 2011 E Andreassen (2953_CR4) 2011; 43 A Khadilkar (2953_CR27) 2019; 102 |
| References_xml | – ident: CR45 – ident: CR22 – ident: CR49 – ident: CR39 – ident: CR16 – ident: CR51 – ident: CR12 – volume: 37 start-page: 89 issue: 4 year: 2018 ident: CR53 article-title: Learning three-dimensional flow for interactive aerodynamic design publication-title: ACM Transactions on Graphics (TOG) doi: 10.1145/3197517.3201325 – volume: 20 start-page: 011002 issue: 1 year: 2020 ident: CR38 article-title: Stress field prediction in cantilevered structures using convolutional neural networks publication-title: J Comput Inf Sci Eng doi: 10.1115/1.4044097 – ident: CR35 – ident: CR29 – ident: CR54 – ident: CR58 – volume: 23 start-page: 358 issue: 2 year: 1988 end-page: 367 ident: CR26 article-title: Design of an image edge detection filter using the Sobel operator publication-title: IEEE J Solid State Circuits doi: 10.1109/4.996 – ident: CR25 – ident: CR42 – volume: 33 start-page: 401 issue: 4–5 year: 2007 end-page: 424 ident: CR46 article-title: Morphology-based black and white filters for topology optimization publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-006-0087-x – ident: CR21 – volume: 521 start-page: 436 issue: 7553 year: 2015 end-page: 444 ident: CR31 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – ident: CR19 – volume: 313 start-page: 504 issue: 5786 year: 2006 end-page: 507 ident: CR20 article-title: Reducing the dimensionality of data with neural networks publication-title: Science doi: 10.1126/science.1127647 – start-page: 52 year: 2011 end-page: 59 ident: CR33 article-title: Stacked convolutional auto-encoders for hierarchical feature extraction publication-title: International Conference on Artificial Neural Networks – ident: CR15 – ident: CR50 – ident: CR11 – ident: CR36 – ident: CR5 – volume: 101 start-page: 12 year: 2018 end-page: 22 ident: CR57 article-title: FeatureNet: machining feature recognition based on 3D convolution neural network publication-title: Comput Aided Des doi: 10.1016/j.cad.2018.03.006 – volume: 22 start-page: 1345 issue: 10 year: 2009 end-page: 1359 ident: CR41 article-title: A survey on transfer learning publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2009.191 – ident: CR47 – volume: 190 start-page: 3443 issue: 26–27 year: 2001 end-page: 3459 ident: CR9 article-title: Topology optimization of nonlinear elastic structures and compliant mechanisms publication-title: Comput Methods Appl Mech Eng doi: 10.1016/S0045-7825(00)00278-4 – ident: CR14 – ident: CR2 – ident: CR37 – ident: CR30 – ident: CR10 – ident: CR6 – ident: CR56 – volume: 102 start-page: 2555 issue: 5–8 year: 2019 end-page: 2569 ident: CR27 article-title: Deep learning–based stress prediction for bottom-up SLA 3D printing process publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-019-03363-4 – ident: CR40 – volume: 9 start-page: 2579 year: 2008 end-page: 2605 ident: CR32 article-title: Visualizing data using t-SNE publication-title: J Mach Learn Res – ident: CR23 – volume: 43 start-page: 1 issue: 1 year: 2011 end-page: 16 ident: CR4 article-title: Efficient topology optimization in MATLAB using 88 lines of code publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-010-0594-7 – volume: 50 start-page: 2143 issue: 9 year: 2001 end-page: 2158 ident: CR8 article-title: Filters in topology optimization publication-title: Int J Numer Methods Eng doi: 10.1002/nme.116 – ident: CR44 – ident: CR48 – year: 2007 ident: CR55 publication-title: Review of metamodeling techniques in support of engineering design optimization doi: 10.1115/1.2429697 – ident: CR3 – volume: 29 start-page: 2352 issue: 9 year: 2017 end-page: 2449 ident: CR43 article-title: Deep convolutional neural networks for image classification: a comprehensive review publication-title: Neural Comput doi: 10.1162/neco_a_00990 – ident: CR52 – ident: CR13 – volume: 63 start-page: 3 issue: 1 year: 2006 end-page: 42 ident: CR17 article-title: Extremely randomized trees publication-title: Mach Learn doi: 10.1007/s10994-006-6226-1 – ident: CR34 – volume: 39 start-page: 240 year: 2016 end-page: 250 ident: CR1 article-title: Structural topology optimization using multi-objective genetic algorithm with constructive solid geometry representation publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2015.10.063 – ident: CR7 – volume: 61 start-page: 238 issue: 2 year: 2004 end-page: 254 ident: CR18 article-title: Achieving minimum length scale in topology optimization using nodal design variables and projection functions publication-title: Int J Numer Methods Eng doi: 10.1002/nme.1064 – ident: CR28 – ident: CR24 – ident: 2953_CR56 doi: 10.1115/1.4044199 – volume: 101 start-page: 12 year: 2018 ident: 2953_CR57 publication-title: Comput Aided Des doi: 10.1016/j.cad.2018.03.006 – ident: 2953_CR7 doi: 10.1016/0045-7825(88)90086-2 – ident: 2953_CR51 doi: 10.1115/DETC2017-68192 – ident: 2953_CR13 doi: 10.1115/1.4044597 – volume: 33 start-page: 401 issue: 4–5 year: 2007 ident: 2953_CR46 publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-006-0087-x – volume: 61 start-page: 238 issue: 2 year: 2004 ident: 2953_CR18 publication-title: Int J Numer Methods Eng doi: 10.1002/nme.1064 – ident: 2953_CR30 doi: 10.1080/0305215X.2010.502935 – volume: 63 start-page: 3 issue: 1 year: 2006 ident: 2953_CR17 publication-title: Mach Learn doi: 10.1007/s10994-006-6226-1 – ident: 2953_CR49 doi: 10.1109/ICCV.2015.114 – ident: 2953_CR5 – ident: 2953_CR48 doi: 10.1016/j.destud.2011.06.001 – ident: 2953_CR22 – ident: 2953_CR34 doi: 10.1145/3173574.3173943 – ident: 2953_CR36 doi: 10.1109/IROS.2015.7353481 – ident: 2953_CR10 doi: 10.1115/DETC2016-60091 – volume: 313 start-page: 504 issue: 5786 year: 2006 ident: 2953_CR20 publication-title: Science doi: 10.1126/science.1127647 – volume: 23 start-page: 358 issue: 2 year: 1988 ident: 2953_CR26 publication-title: IEEE J Solid State Circuits doi: 10.1109/4.996 – ident: 2953_CR39 doi: 10.1115/DETC2018-85506 – ident: 2953_CR21 – ident: 2953_CR42 – ident: 2953_CR44 doi: 10.1109/ICCV.2017.74 – volume: 39 start-page: 240 year: 2016 ident: 2953_CR1 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2015.10.063 – ident: 2953_CR45 doi: 10.1016/j.autcon.2004.07.002 – volume: 43 start-page: 1 issue: 1 year: 2011 ident: 2953_CR4 publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-010-0594-7 – ident: 2953_CR15 – volume: 37 start-page: 89 issue: 4 year: 2018 ident: 2953_CR53 publication-title: ACM Transactions on Graphics (TOG) doi: 10.1145/3197517.3201325 – ident: 2953_CR50 doi: 10.3390/designs4020010 – ident: 2953_CR35 – ident: 2953_CR29 – ident: 2953_CR6 – volume: 22 start-page: 1345 issue: 10 year: 2009 ident: 2953_CR41 publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2009.191 – ident: 2953_CR25 – volume: 521 start-page: 436 issue: 7553 year: 2015 ident: 2953_CR31 publication-title: Nature doi: 10.1038/nature14539 – ident: 2953_CR14 doi: 10.1016/j.measurement.2020.108634 – ident: 2953_CR24 doi: 10.1109/CVPR.2018.00526 – ident: 2953_CR40 doi: 10.1115/1.4044229 – ident: 2953_CR12 doi: 10.1115/1.4048626 – ident: 2953_CR52 doi: 10.1145/3145749.3145758 – ident: 2953_CR58 doi: 10.1109/CVPR.2016.319 – ident: 2953_CR47 – ident: 2953_CR37 – ident: 2953_CR28 doi: 10.1016/j.cad.2010.09.009 – start-page: 52 volume-title: International Conference on Artificial Neural Networks year: 2011 ident: 2953_CR33 – ident: 2953_CR23 doi: 10.1016/j.promfg.2020.02.251 – volume: 102 start-page: 2555 issue: 5–8 year: 2019 ident: 2953_CR27 publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-019-03363-4 – volume: 9 start-page: 2579 year: 2008 ident: 2953_CR32 publication-title: J Mach Learn Res – ident: 2953_CR3 – volume: 29 start-page: 2352 issue: 9 year: 2017 ident: 2953_CR43 publication-title: Neural Comput doi: 10.1162/neco_a_00990 – volume: 20 start-page: 011002 issue: 1 year: 2020 ident: 2953_CR38 publication-title: J Comput Inf Sci Eng doi: 10.1115/1.4044097 – volume: 50 start-page: 2143 issue: 9 year: 2001 ident: 2953_CR8 publication-title: Int J Numer Methods Eng doi: 10.1002/nme.116 – ident: 2953_CR19 doi: 10.1145/2939672.2939738 – ident: 2953_CR16 doi: 10.1609/aaai.v33i01.33018279 – ident: 2953_CR2 doi: 10.1109/DEPCOS-RELCOMEX.2006.38 – volume: 190 start-page: 3443 issue: 26–27 year: 2001 ident: 2953_CR9 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/S0045-7825(00)00278-4 – ident: 2953_CR11 doi: 10.1145/800248.807360 – ident: 2953_CR54 doi: 10.1002/qre.1924 – volume-title: Review of metamodeling techniques in support of engineering design optimization year: 2007 ident: 2953_CR55 doi: 10.1115/1.2429697 |
| SSID | ssj0008049 |
| Score | 2.6382985 |
| Snippet | Engineering design research integrating artificial intelligence (AI) into computer-aided design (CAD) and computer-aided engineering (CAE) is actively being... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 2725 |
| SubjectTerms | Artificial intelligence Automation CAD CAE Computational Mathematics and Numerical Analysis Computer aided design Computer aided engineering Deep learning Design engineering Design of experiments Engineering Engineering Design Industrial Application Paper Performance evaluation Product design Theoretical and Applied Mechanics Three dimensional models |
| SummonAdditionalLinks | – databaseName: Engineering Database dbid: M7S link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagMMDAG1EoyAMbWM2rccyCqtIKlgoJkLpFfpZKVVLaFP4-tuM0gAQLY5TEifyd7z7b5-8AuORm84dLhhShHop8poeUCBXyEhbqCGRIq7DFJvBwmIxG5NEtuC1cWmXlE62jFjk3a-RtbVok0uEzIrezN2SqRpndVVdCYx1sGJUE36buPa08cVLSX0NqkB_hkTs0Y4_OGbKQIJOg4AWkEyLyPTDVbPPHBqmNO4Pd__7xHthxjBN2SxPZB2syOwDbX3QID4F6cKIR-goKKWfQFZMYw0lW5FDD1e51-7CUfb6BY6tVbRylftpkgECaCVgLh8NcwfAO8vJI5FJ__eNVyukReBn0n3v3yBVgQFyPzALxDtcBjEdCCRYIrDsqTgTtcD_iRugOY-xRP6QMq8CXlGoqGQdEGVFATdIoC8Nj0MjyTJ4AyFXCOeuoiEkZxV7AYo9iJvRkUgmiJ8NN4Fe9n3KnTm6KZEzTla6yRSzViKUWsZQ0wdXqnVmpzfHn060KptSN00VaY9QE1xXQ9e3fWzv9u7UzsBUY27JZfy3QKOZLeQ42-XsxWcwvrJV-Ai2k65s priority: 102 providerName: ProQuest |
| Title | Integrating deep learning into CAD/CAE system: generative design and evaluation of 3D conceptual wheel |
| URI | https://link.springer.com/article/10.1007/s00158-021-02953-9 https://www.proquest.com/docview/2579464349 |
| Volume | 64 |
| WOSCitedRecordID | wos000661442500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1615-1488 dateEnd: 20241211 omitProxy: false ssIdentifier: ssj0008049 issn: 1615-147X databaseCode: M7S dateStart: 19970201 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1615-1488 dateEnd: 20241211 omitProxy: false ssIdentifier: ssj0008049 issn: 1615-147X databaseCode: BENPR dateStart: 19970201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1615-1488 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008049 issn: 1615-147X databaseCode: RSV dateStart: 20000301 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwIxEG4UPejBtxFF0oM3bdz3wxsiRC-EgBpumz6RhCyEh_59p7vdRY2a6HHTxzYz7czXdOYbhC64fvzhkhEVU4t4NoMjJVxFrIi54IE0aBVZsYmw04kGg7hrksLmRbR78SSZWeoy2U2794jokALLiX2XxOtoA9xdpAs29PrPpf2NctCroQyxvXBgUmW-n-OzO1phzC_Popm3ae_-b517aMegS9zIt8M-WpPpAdr-wDl4iNSDIYiALyyknGJTOGKIR-ligkE1181GC-cUzzd4mPFSa6MIvXW0B6apwCuScDxR2L3DPE9_XMLf316kHB-hp3brsXlPTLEFwuEULgj3OTgr7gklmCNCWHoQCepz2-Oa1C4MQ4vaLmWhcmxJKcDGwImVJgAEQEaZ6x6jSjpJ5QnCXEWcM195TEovsBwWWDRkAi6OSsRw8a0iu5B5wg0TuS6IMU5KDuVMhgnIMMlkmMRVdFmOmeY8HL_2rhWqTMyZnCdgnGIPAJgHzVeF6lbNP892-rfuZ2jL0drPIv5qqLKYLeU52uSvi9F8Vkcbt61Ot1fXQab9erZz3wE0AuQF |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NT9tAEB2hFKntodAvNUDpHsqJrmKvndiLhCpEgogIERKplJu7nzRS5AQSQPwpfiOzaztpkeDGoUfL9q7sfTvzdnfmDcB35Q5_lJHUchHQOJQ4pXRkaZDKCD2QI63aF5tI-v10OORnK3Bf5cK4sMrKJnpDrSfK7ZE3EFo8RvcZ85_TS-qqRrnT1aqERgGLE3N3i0u22X63jeO7w9hRZ3B4TMuqAlQh3OZUNRVaZRVrqyXTScB4K9WiqcJYOfW2JEkCEUZCJpaFRgjkRy3GrVO6Q-YhpNsARZP_CmkE4z5U8Hxh-dOCbjsSRcM4GZZJOj5Vz5GTlLqACOyxGVH-ryNcsttHB7Lezx2t_W9_aB3elYyaHBRT4D2smPwDvP1LZ_Ej2G4pioFXRBszJWWxjAsyyucTgnBsHB50SCFrvUcuvBa3cwT4tItwISLXZCmMTiaWRG2iipTPa-z99o8x40_w60U-9DPU8kluvgBRNlVKNm0sjYlbAZOtQCRS42LZao6L_TqE1WhnqlRfd0VAxtlCN9ojJEOEZB4hGa_D7uKdaaE98uzTWxUsstIOzbIlJurwowLW8vbTrW0839o3eH08OO1lvW7_ZBPeMIdrH-G4BbX51bX5CqvqZj6aXW37GULg90sD7gEzGEcS |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF60iujBt1itugdvujSPTZN4K63FopSCD3oL-6yFkpY21b_vbJKmVVQQj2EfWWZndr5lZ75B6FKYxx-hONEhswi1OZiUdDWxAu6CBzKgVabFJvxOJ-j1wu5SFn8a7T5_ksxyGgxLU5xUx1JXi8Q34-oDYsILLCf0XBKuojVqAunNff3xpTiLgwwAG1hDbOr38rSZ7-f47JoWePPLE2nqeVo7_1_zLtrOUSeuZ2qyh1ZUvI-2lrgID5Bu58QR8IWlUmOcF5To40GcjDBsWbVRv8UZ9fMN7qd81eawhN4mCgSzWOIFeTgeaew2scjSImfw9_dXpYaH6Ll1-9S4I3kRBiLAOhMiPAFOTFCpJXekD0uvBZJ5wqbCkN35vm8x22Xc146tGAM4WXNCbYgBAagx7rpHqBSPYnWMsNCBENzTlCtFa5bDaxbzuYQLpZYhXIjLyJ7LPxI5Q7kplDGMCm7lVIYRyDBKZRiFZXRVjBln_By_9q7MtzXKbXUawaEVUgBmFJqv59u4aP55tpO_db9AG91mK3pod-5P0aZjFCENCqygUjKZqTO0Lt6SwXRynqrwB2hZ7Ts |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integrating+deep+learning+into+CAD%2FCAE+system%3A+generative+design+and+evaluation+of+3D+conceptual+wheel&rft.jtitle=Structural+and+multidisciplinary+optimization&rft.au=Yoo%2C+Soyoung&rft.au=Lee%2C+Sunghee&rft.au=Kim%2C+Seongsin&rft.au=Hwang%2C+Kwang+Hyeon&rft.date=2021-10-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1615-147X&rft.eissn=1615-1488&rft.volume=64&rft.issue=4&rft.spage=2725&rft.epage=2747&rft_id=info:doi/10.1007%2Fs00158-021-02953-9&rft.externalDocID=10_1007_s00158_021_02953_9 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1615-147X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1615-147X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1615-147X&client=summon |