Integrating deep learning into CAD/CAE system: generative design and evaluation of 3D conceptual wheel

Engineering design research integrating artificial intelligence (AI) into computer-aided design (CAD) and computer-aided engineering (CAE) is actively being conducted. This study proposes a deep learning-based CAD/CAE framework in the conceptual design phase that automatically generates 3D CAD desig...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Structural and multidisciplinary optimization Ročník 64; číslo 4; s. 2725 - 2747
Hlavní autoři: Yoo, Soyoung, Lee, Sunghee, Kim, Seongsin, Hwang, Kwang Hyeon, Park, Jong Ho, Kang, Namwoo
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.10.2021
Springer Nature B.V
Témata:
ISSN:1615-147X, 1615-1488
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Engineering design research integrating artificial intelligence (AI) into computer-aided design (CAD) and computer-aided engineering (CAE) is actively being conducted. This study proposes a deep learning-based CAD/CAE framework in the conceptual design phase that automatically generates 3D CAD designs and evaluates their engineering performance. The proposed framework comprises seven stages: (1) 2D generative design, (2) dimensionality reduction, (3) design of experiment in latent space, (4) CAD automation, (5) CAE automation, (6) transfer learning, and (7) visualization and analysis. The proposed framework is demonstrated through a road wheel design case study and indicates that AI can be practically incorporated into an end-use product design project. Engineers and industrial designers can jointly review a large number of generated 3D CAD models by using this framework along with the engineering performance results estimated by AI and find conceptual design candidates for the subsequent detailed design stage.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1615-147X
1615-1488
DOI:10.1007/s00158-021-02953-9