Integrating deep learning into CAD/CAE system: generative design and evaluation of 3D conceptual wheel

Engineering design research integrating artificial intelligence (AI) into computer-aided design (CAD) and computer-aided engineering (CAE) is actively being conducted. This study proposes a deep learning-based CAD/CAE framework in the conceptual design phase that automatically generates 3D CAD desig...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Structural and multidisciplinary optimization Jg. 64; H. 4; S. 2725 - 2747
Hauptverfasser: Yoo, Soyoung, Lee, Sunghee, Kim, Seongsin, Hwang, Kwang Hyeon, Park, Jong Ho, Kang, Namwoo
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.10.2021
Springer Nature B.V
Schlagworte:
ISSN:1615-147X, 1615-1488
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Engineering design research integrating artificial intelligence (AI) into computer-aided design (CAD) and computer-aided engineering (CAE) is actively being conducted. This study proposes a deep learning-based CAD/CAE framework in the conceptual design phase that automatically generates 3D CAD designs and evaluates their engineering performance. The proposed framework comprises seven stages: (1) 2D generative design, (2) dimensionality reduction, (3) design of experiment in latent space, (4) CAD automation, (5) CAE automation, (6) transfer learning, and (7) visualization and analysis. The proposed framework is demonstrated through a road wheel design case study and indicates that AI can be practically incorporated into an end-use product design project. Engineers and industrial designers can jointly review a large number of generated 3D CAD models by using this framework along with the engineering performance results estimated by AI and find conceptual design candidates for the subsequent detailed design stage.
AbstractList Engineering design research integrating artificial intelligence (AI) into computer-aided design (CAD) and computer-aided engineering (CAE) is actively being conducted. This study proposes a deep learning-based CAD/CAE framework in the conceptual design phase that automatically generates 3D CAD designs and evaluates their engineering performance. The proposed framework comprises seven stages: (1) 2D generative design, (2) dimensionality reduction, (3) design of experiment in latent space, (4) CAD automation, (5) CAE automation, (6) transfer learning, and (7) visualization and analysis. The proposed framework is demonstrated through a road wheel design case study and indicates that AI can be practically incorporated into an end-use product design project. Engineers and industrial designers can jointly review a large number of generated 3D CAD models by using this framework along with the engineering performance results estimated by AI and find conceptual design candidates for the subsequent detailed design stage.
Author Lee, Sunghee
Kim, Seongsin
Kang, Namwoo
Park, Jong Ho
Hwang, Kwang Hyeon
Yoo, Soyoung
Author_xml – sequence: 1
  givenname: Soyoung
  surname: Yoo
  fullname: Yoo, Soyoung
  organization: Department of Mechanical Systems Engineering, Sookmyung Women’s University
– sequence: 2
  givenname: Sunghee
  surname: Lee
  fullname: Lee, Sunghee
  organization: Department of Mechanical Systems Engineering, Sookmyung Women’s University
– sequence: 3
  givenname: Seongsin
  surname: Kim
  fullname: Kim, Seongsin
  organization: Department of Mechanical Systems Engineering, Sookmyung Women’s University
– sequence: 4
  givenname: Kwang Hyeon
  surname: Hwang
  fullname: Hwang, Kwang Hyeon
  organization: Hyundai Motor Company
– sequence: 5
  givenname: Jong Ho
  surname: Park
  fullname: Park, Jong Ho
  organization: Hyundai Motor Company
– sequence: 6
  givenname: Namwoo
  orcidid: 0000-0003-3475-7477
  surname: Kang
  fullname: Kang, Namwoo
  email: nwkang@kaist.ac.kr
  organization: The Cho Chun Shik Graduate School of Green Transportation, Korea Advanced Institute of Science and Technology
BookMark eNp9kEFPwyAUx4mZidv0C3gi8VwHpS3F29JNXbLEiybeCKOvtUtHK7CZfXvZZjTxsAMBXn6_x-M_QgPTGUDolpJ7SgifOEJomkckpmGJlEXiAg1pRtOIJnk--D3z9ys0cm5NCMlJIoaoWhgPtVW-MTUuAXrcgrLmcGuM73AxnU2K6Ry7vfOwecA1GDjQOwi0a2qDlSkx7FS7DdXO4K7CbIZ1ZzT0fqta_PUB0F6jy0q1Dm5-9jF6e5y_Fs_R8uVpUUyXkWZU-EinOidUJ2VVruKSh69kealSTROdpyTjnBNFmVrxKqaglOA8i0VFWCqSOJQZG6O7U9_edp9bcF6uu6014UkZp1wkWcISEaj8RGnbOWehkrrxx_G9VU0rKZGHVOUpVRlSlcdU5UGN_6m9bTbK7s9L7CS5AJsa7N9UZ6xvIeuLeA
CitedBy_id crossref_primary_10_1007_s00158_022_03485_6
crossref_primary_10_1016_j_jobe_2024_110972
crossref_primary_10_1088_1758_5090_ad8966
crossref_primary_10_1016_j_ifacol_2022_09_401
crossref_primary_10_1016_j_autcon_2024_105747
crossref_primary_10_1016_j_autcon_2024_105901
crossref_primary_10_1016_j_aei_2022_101825
crossref_primary_10_1016_j_aei_2024_102835
crossref_primary_10_1007_s00158_022_03347_1
crossref_primary_10_3390_app14093564
crossref_primary_10_3390_modelling5030066
crossref_primary_10_1007_s42452_025_06833_5
crossref_primary_10_3390_machines11060577
crossref_primary_10_1093_jcde_qwad049
crossref_primary_10_3390_electronics12081946
crossref_primary_10_1016_j_procs_2022_12_239
crossref_primary_10_1016_j_cirp_2024_06_003
crossref_primary_10_1016_j_engstruct_2025_120578
crossref_primary_10_1016_j_cad_2022_103225
crossref_primary_10_1016_j_compbiomed_2025_111118
crossref_primary_10_1007_s00158_024_03957_x
crossref_primary_10_1007_s00158_024_03851_6
crossref_primary_10_3390_app14166959
crossref_primary_10_1016_j_measurement_2023_113982
crossref_primary_10_1080_09544828_2025_2558334
crossref_primary_10_1016_j_aei_2024_103045
crossref_primary_10_1007_s00466_023_02434_4
crossref_primary_10_1016_j_aei_2022_101711
crossref_primary_10_1016_j_aei_2022_101793
crossref_primary_10_1016_j_displa_2023_102623
crossref_primary_10_1007_s42791_025_00097_1
crossref_primary_10_3390_pr10020303
crossref_primary_10_1016_j_jmapro_2025_04_013
crossref_primary_10_1080_13588265_2024_2406837
crossref_primary_10_1080_09544828_2024_2362587
crossref_primary_10_1016_j_compscitech_2022_109661
crossref_primary_10_1016_j_ijhydene_2024_05_437
crossref_primary_10_1016_j_finel_2024_104122
crossref_primary_10_1016_j_ijmecsci_2025_110243
crossref_primary_10_1109_TASE_2023_3295571
crossref_primary_10_1016_j_aei_2024_103074
crossref_primary_10_1016_j_autcon_2024_105284
crossref_primary_10_3390_buildings12122194
crossref_primary_10_1007_s00158_022_03295_w
crossref_primary_10_1016_j_aei_2025_103354
crossref_primary_10_1016_j_ijmecsci_2024_109736
crossref_primary_10_1155_2022_1608840
crossref_primary_10_1017_dsj_2023_25
crossref_primary_10_1016_j_eswa_2024_124928
crossref_primary_10_1007_s00170_025_15273_9
crossref_primary_10_1016_j_aei_2023_102259
crossref_primary_10_1016_j_procir_2022_05_249
crossref_primary_10_1007_s00158_022_03386_8
crossref_primary_10_1016_j_engappai_2023_107283
crossref_primary_10_1016_j_aei_2024_102892
crossref_primary_10_1016_j_cad_2023_103609
crossref_primary_10_1016_j_jii_2024_100759
crossref_primary_10_1080_08839514_2025_2453782
crossref_primary_10_3390_app142210517
crossref_primary_10_1016_j_jmsy_2025_01_012
crossref_primary_10_1017_S0890060425100140
crossref_primary_10_3390_app15052753
crossref_primary_10_4018_IJITSA_386840
crossref_primary_10_1007_s11831_025_10302_y
crossref_primary_10_1061_JCCEE5_CPENG_5929
crossref_primary_10_12677_mos_2025_144337
crossref_primary_10_3390_buildings14051342
crossref_primary_10_1371_journal_pone_0327063
crossref_primary_10_3390_app15147692
crossref_primary_10_1016_j_apacoust_2025_110852
crossref_primary_10_3390_electronics14010190
crossref_primary_10_1016_j_eml_2025_102321
crossref_primary_10_3390_e27030319
crossref_primary_10_1080_17452007_2025_2527415
crossref_primary_10_3390_sym17040621
crossref_primary_10_1080_10899995_2024_2384340
crossref_primary_10_1080_09544828_2022_2164440
crossref_primary_10_1007_s40964_025_01226_x
crossref_primary_10_1016_j_jmsy_2022_10_001
crossref_primary_10_1093_jcde_qwae102
crossref_primary_10_1016_j_engappai_2025_111504
crossref_primary_10_1016_j_eswa_2025_127520
Cites_doi 10.1145/3197517.3201325
10.1115/1.4044097
10.1109/4.996
10.1007/s00158-006-0087-x
10.1038/nature14539
10.1126/science.1127647
10.1016/j.cad.2018.03.006
10.1109/TKDE.2009.191
10.1016/S0045-7825(00)00278-4
10.1007/s00170-019-03363-4
10.1007/s00158-010-0594-7
10.1002/nme.116
10.1115/1.2429697
10.1162/neco_a_00990
10.1007/s10994-006-6226-1
10.1016/j.asoc.2015.10.063
10.1002/nme.1064
10.1115/1.4044199
10.1016/0045-7825(88)90086-2
10.1115/DETC2017-68192
10.1115/1.4044597
10.1080/0305215X.2010.502935
10.1109/ICCV.2015.114
10.1016/j.destud.2011.06.001
10.1145/3173574.3173943
10.1109/IROS.2015.7353481
10.1115/DETC2016-60091
10.1115/DETC2018-85506
10.1109/ICCV.2017.74
10.1016/j.autcon.2004.07.002
10.3390/designs4020010
10.1016/j.measurement.2020.108634
10.1109/CVPR.2018.00526
10.1115/1.4044229
10.1115/1.4048626
10.1145/3145749.3145758
10.1109/CVPR.2016.319
10.1016/j.cad.2010.09.009
10.1016/j.promfg.2020.02.251
10.1145/2939672.2939738
10.1609/aaai.v33i01.33018279
10.1109/DEPCOS-RELCOMEX.2006.38
10.1145/800248.807360
10.1002/qre.1924
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021
The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1007/s00158-021-02953-9
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database (subscription)
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle CrossRef
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest Central (New)
Engineering Collection
ProQuest One Academic (New)
DatabaseTitleList Engineering Database

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1615-1488
EndPage 2747
ExternalDocumentID 10_1007_s00158_021_02953_9
GrantInformation_xml – fundername: Hyundai Motor Group
  funderid: http://dx.doi.org/10.13039/100008256
– fundername: National Research Foundation of Korea
  grantid: 2017R1C1B2005266; 2018R1A5A7025409
  funderid: http://dx.doi.org/10.13039/501100003725
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
123
199
1N0
2.D
203
29Q
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
78A
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHIR
ADINQ
ADKNI
ADKPE
ADPHR
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARCEE
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
L6V
LAS
LLZTM
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P9P
PF0
PT4
PT5
PTHSS
QOK
QOS
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z86
Z88
Z8M
Z8N
Z8P
Z8R
Z8S
Z8T
Z8U
Z8W
Z8Z
Z92
ZMTXR
_50
~02
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c319t-c5c801c4dfdb2d702968da5c14c85067770a13ab7f21eaa977629f0359423ab33
IEDL.DBID M7S
ISICitedReferencesCount 110
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000661442500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1615-147X
IngestDate Wed Nov 05 00:47:39 EST 2025
Sat Nov 29 02:50:17 EST 2025
Tue Nov 18 21:34:51 EST 2025
Fri Feb 21 02:47:13 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Deep learning
Topology optimization
Generative design
Artificial intelligence
CAE
CAD
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-c5c801c4dfdb2d702968da5c14c85067770a13ab7f21eaa977629f0359423ab33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3475-7477
PQID 2579464349
PQPubID 2043658
PageCount 23
ParticipantIDs proquest_journals_2579464349
crossref_citationtrail_10_1007_s00158_021_02953_9
crossref_primary_10_1007_s00158_021_02953_9
springer_journals_10_1007_s00158_021_02953_9
PublicationCentury 2000
PublicationDate 20211000
2021-10-00
20211001
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: 20211000
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Structural and multidisciplinary optimization
PublicationTitleAbbrev Struct Multidisc Optim
PublicationYear 2021
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References CR39
Bourdin (CR8) 2001; 50
CR37
CR36
Ahmed, Deb, Bhattacharya (CR1) 2016; 39
CR35
CR34
CR30
Guest, Prévost, Belytschko (CR18) 2004; 61
Pan, Yang (CR41) 2009; 22
Maaten, Hinton (CR32) 2008; 9
CR2
CR3
CR6
CR5
CR7
CR49
CR48
CR47
Hinton, Salakhutdinov (CR20) 2006; 313
CR45
CR44
CR42
Umetani, Bickel (CR53) 2018; 37
CR40
Geurts, Ernst, Wehenkel (CR17) 2006; 63
Andreassen, Clausen, Schevenels, Lazarov, Sigmund (CR4) 2011; 43
Khadilkar, Wang, Rai (CR27) 2019; 102
Nie, Jiang, Kara (CR38) 2020; 20
CR19
CR16
CR15
CR14
CR58
CR13
CR12
CR56
Zhang, Jaiswal, Rai (CR57) 2018; 101
CR11
CR10
LeCun, Bengio, Hinton (CR31) 2015; 521
CR54
CR52
CR51
CR50
Kanopoulos, Vasanthavada, Baker (CR26) 1988; 23
Bruns, Tortorelli (CR9) 2001; 190
Masci, Meier, Cireşan, Schmidhuber (CR33) 2011
Rawat, Wang (CR43) 2017; 29
CR29
CR28
Wang, Shan (CR55) 2007
CR25
CR24
Sigmund (CR46) 2007; 33
CR23
CR22
CR21
2953_CR47
2953_CR48
2953_CR49
2953_CR44
2953_CR45
2953_CR40
TE Bruns (2953_CR9) 2001; 190
2953_CR42
P Geurts (2953_CR17) 2006; 63
F Ahmed (2953_CR1) 2016; 39
2953_CR2
2953_CR14
2953_CR58
2953_CR15
2953_CR16
2953_CR3
2953_CR6
2953_CR10
2953_CR54
2953_CR5
2953_CR11
2953_CR12
2953_CR56
2953_CR7
2953_CR13
2953_CR50
N Kanopoulos (2953_CR26) 1988; 23
2953_CR51
2953_CR52
B Bourdin (2953_CR8) 2001; 50
W Rawat (2953_CR43) 2017; 29
N Umetani (2953_CR53) 2018; 37
GG Wang (2953_CR55) 2007
2953_CR19
O Sigmund (2953_CR46) 2007; 33
2953_CR25
2953_CR28
LVD Maaten (2953_CR32) 2008; 9
2953_CR21
2953_CR22
2953_CR23
GE Hinton (2953_CR20) 2006; 313
2953_CR24
JK Guest (2953_CR18) 2004; 61
Z Zhang (2953_CR57) 2018; 101
Z Nie (2953_CR38) 2020; 20
2953_CR29
SJ Pan (2953_CR41) 2009; 22
2953_CR36
2953_CR37
2953_CR39
2953_CR34
2953_CR35
2953_CR30
Y LeCun (2953_CR31) 2015; 521
J Masci (2953_CR33) 2011
E Andreassen (2953_CR4) 2011; 43
A Khadilkar (2953_CR27) 2019; 102
References_xml – ident: CR45
– ident: CR22
– ident: CR49
– ident: CR39
– ident: CR16
– ident: CR51
– ident: CR12
– volume: 37
  start-page: 89
  issue: 4
  year: 2018
  ident: CR53
  article-title: Learning three-dimensional flow for interactive aerodynamic design
  publication-title: ACM Transactions on Graphics (TOG)
  doi: 10.1145/3197517.3201325
– volume: 20
  start-page: 011002
  issue: 1
  year: 2020
  ident: CR38
  article-title: Stress field prediction in cantilevered structures using convolutional neural networks
  publication-title: J Comput Inf Sci Eng
  doi: 10.1115/1.4044097
– ident: CR35
– ident: CR29
– ident: CR54
– ident: CR58
– volume: 23
  start-page: 358
  issue: 2
  year: 1988
  end-page: 367
  ident: CR26
  article-title: Design of an image edge detection filter using the Sobel operator
  publication-title: IEEE J Solid State Circuits
  doi: 10.1109/4.996
– ident: CR25
– ident: CR42
– volume: 33
  start-page: 401
  issue: 4–5
  year: 2007
  end-page: 424
  ident: CR46
  article-title: Morphology-based black and white filters for topology optimization
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-006-0087-x
– ident: CR21
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  end-page: 444
  ident: CR31
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– ident: CR19
– volume: 313
  start-page: 504
  issue: 5786
  year: 2006
  end-page: 507
  ident: CR20
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
  doi: 10.1126/science.1127647
– start-page: 52
  year: 2011
  end-page: 59
  ident: CR33
  article-title: Stacked convolutional auto-encoders for hierarchical feature extraction
  publication-title: International Conference on Artificial Neural Networks
– ident: CR15
– ident: CR50
– ident: CR11
– ident: CR36
– ident: CR5
– volume: 101
  start-page: 12
  year: 2018
  end-page: 22
  ident: CR57
  article-title: FeatureNet: machining feature recognition based on 3D convolution neural network
  publication-title: Comput Aided Des
  doi: 10.1016/j.cad.2018.03.006
– volume: 22
  start-page: 1345
  issue: 10
  year: 2009
  end-page: 1359
  ident: CR41
  article-title: A survey on transfer learning
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2009.191
– ident: CR47
– volume: 190
  start-page: 3443
  issue: 26–27
  year: 2001
  end-page: 3459
  ident: CR9
  article-title: Topology optimization of nonlinear elastic structures and compliant mechanisms
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/S0045-7825(00)00278-4
– ident: CR14
– ident: CR2
– ident: CR37
– ident: CR30
– ident: CR10
– ident: CR6
– ident: CR56
– volume: 102
  start-page: 2555
  issue: 5–8
  year: 2019
  end-page: 2569
  ident: CR27
  article-title: Deep learning–based stress prediction for bottom-up SLA 3D printing process
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-019-03363-4
– ident: CR40
– volume: 9
  start-page: 2579
  year: 2008
  end-page: 2605
  ident: CR32
  article-title: Visualizing data using t-SNE
  publication-title: J Mach Learn Res
– ident: CR23
– volume: 43
  start-page: 1
  issue: 1
  year: 2011
  end-page: 16
  ident: CR4
  article-title: Efficient topology optimization in MATLAB using 88 lines of code
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-010-0594-7
– volume: 50
  start-page: 2143
  issue: 9
  year: 2001
  end-page: 2158
  ident: CR8
  article-title: Filters in topology optimization
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/nme.116
– ident: CR44
– ident: CR48
– year: 2007
  ident: CR55
  publication-title: Review of metamodeling techniques in support of engineering design optimization
  doi: 10.1115/1.2429697
– ident: CR3
– volume: 29
  start-page: 2352
  issue: 9
  year: 2017
  end-page: 2449
  ident: CR43
  article-title: Deep convolutional neural networks for image classification: a comprehensive review
  publication-title: Neural Comput
  doi: 10.1162/neco_a_00990
– ident: CR52
– ident: CR13
– volume: 63
  start-page: 3
  issue: 1
  year: 2006
  end-page: 42
  ident: CR17
  article-title: Extremely randomized trees
  publication-title: Mach Learn
  doi: 10.1007/s10994-006-6226-1
– ident: CR34
– volume: 39
  start-page: 240
  year: 2016
  end-page: 250
  ident: CR1
  article-title: Structural topology optimization using multi-objective genetic algorithm with constructive solid geometry representation
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2015.10.063
– ident: CR7
– volume: 61
  start-page: 238
  issue: 2
  year: 2004
  end-page: 254
  ident: CR18
  article-title: Achieving minimum length scale in topology optimization using nodal design variables and projection functions
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/nme.1064
– ident: CR28
– ident: CR24
– ident: 2953_CR56
  doi: 10.1115/1.4044199
– volume: 101
  start-page: 12
  year: 2018
  ident: 2953_CR57
  publication-title: Comput Aided Des
  doi: 10.1016/j.cad.2018.03.006
– ident: 2953_CR7
  doi: 10.1016/0045-7825(88)90086-2
– ident: 2953_CR51
  doi: 10.1115/DETC2017-68192
– ident: 2953_CR13
  doi: 10.1115/1.4044597
– volume: 33
  start-page: 401
  issue: 4–5
  year: 2007
  ident: 2953_CR46
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-006-0087-x
– volume: 61
  start-page: 238
  issue: 2
  year: 2004
  ident: 2953_CR18
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/nme.1064
– ident: 2953_CR30
  doi: 10.1080/0305215X.2010.502935
– volume: 63
  start-page: 3
  issue: 1
  year: 2006
  ident: 2953_CR17
  publication-title: Mach Learn
  doi: 10.1007/s10994-006-6226-1
– ident: 2953_CR49
  doi: 10.1109/ICCV.2015.114
– ident: 2953_CR5
– ident: 2953_CR48
  doi: 10.1016/j.destud.2011.06.001
– ident: 2953_CR22
– ident: 2953_CR34
  doi: 10.1145/3173574.3173943
– ident: 2953_CR36
  doi: 10.1109/IROS.2015.7353481
– ident: 2953_CR10
  doi: 10.1115/DETC2016-60091
– volume: 313
  start-page: 504
  issue: 5786
  year: 2006
  ident: 2953_CR20
  publication-title: Science
  doi: 10.1126/science.1127647
– volume: 23
  start-page: 358
  issue: 2
  year: 1988
  ident: 2953_CR26
  publication-title: IEEE J Solid State Circuits
  doi: 10.1109/4.996
– ident: 2953_CR39
  doi: 10.1115/DETC2018-85506
– ident: 2953_CR21
– ident: 2953_CR42
– ident: 2953_CR44
  doi: 10.1109/ICCV.2017.74
– volume: 39
  start-page: 240
  year: 2016
  ident: 2953_CR1
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2015.10.063
– ident: 2953_CR45
  doi: 10.1016/j.autcon.2004.07.002
– volume: 43
  start-page: 1
  issue: 1
  year: 2011
  ident: 2953_CR4
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-010-0594-7
– ident: 2953_CR15
– volume: 37
  start-page: 89
  issue: 4
  year: 2018
  ident: 2953_CR53
  publication-title: ACM Transactions on Graphics (TOG)
  doi: 10.1145/3197517.3201325
– ident: 2953_CR50
  doi: 10.3390/designs4020010
– ident: 2953_CR35
– ident: 2953_CR29
– ident: 2953_CR6
– volume: 22
  start-page: 1345
  issue: 10
  year: 2009
  ident: 2953_CR41
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2009.191
– ident: 2953_CR25
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: 2953_CR31
  publication-title: Nature
  doi: 10.1038/nature14539
– ident: 2953_CR14
  doi: 10.1016/j.measurement.2020.108634
– ident: 2953_CR24
  doi: 10.1109/CVPR.2018.00526
– ident: 2953_CR40
  doi: 10.1115/1.4044229
– ident: 2953_CR12
  doi: 10.1115/1.4048626
– ident: 2953_CR52
  doi: 10.1145/3145749.3145758
– ident: 2953_CR58
  doi: 10.1109/CVPR.2016.319
– ident: 2953_CR47
– ident: 2953_CR37
– ident: 2953_CR28
  doi: 10.1016/j.cad.2010.09.009
– start-page: 52
  volume-title: International Conference on Artificial Neural Networks
  year: 2011
  ident: 2953_CR33
– ident: 2953_CR23
  doi: 10.1016/j.promfg.2020.02.251
– volume: 102
  start-page: 2555
  issue: 5–8
  year: 2019
  ident: 2953_CR27
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-019-03363-4
– volume: 9
  start-page: 2579
  year: 2008
  ident: 2953_CR32
  publication-title: J Mach Learn Res
– ident: 2953_CR3
– volume: 29
  start-page: 2352
  issue: 9
  year: 2017
  ident: 2953_CR43
  publication-title: Neural Comput
  doi: 10.1162/neco_a_00990
– volume: 20
  start-page: 011002
  issue: 1
  year: 2020
  ident: 2953_CR38
  publication-title: J Comput Inf Sci Eng
  doi: 10.1115/1.4044097
– volume: 50
  start-page: 2143
  issue: 9
  year: 2001
  ident: 2953_CR8
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/nme.116
– ident: 2953_CR19
  doi: 10.1145/2939672.2939738
– ident: 2953_CR16
  doi: 10.1609/aaai.v33i01.33018279
– ident: 2953_CR2
  doi: 10.1109/DEPCOS-RELCOMEX.2006.38
– volume: 190
  start-page: 3443
  issue: 26–27
  year: 2001
  ident: 2953_CR9
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/S0045-7825(00)00278-4
– ident: 2953_CR11
  doi: 10.1145/800248.807360
– ident: 2953_CR54
  doi: 10.1002/qre.1924
– volume-title: Review of metamodeling techniques in support of engineering design optimization
  year: 2007
  ident: 2953_CR55
  doi: 10.1115/1.2429697
SSID ssj0008049
Score 2.6382985
Snippet Engineering design research integrating artificial intelligence (AI) into computer-aided design (CAD) and computer-aided engineering (CAE) is actively being...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2725
SubjectTerms Artificial intelligence
Automation
CAD
CAE
Computational Mathematics and Numerical Analysis
Computer aided design
Computer aided engineering
Deep learning
Design engineering
Design of experiments
Engineering
Engineering Design
Industrial Application Paper
Performance evaluation
Product design
Theoretical and Applied Mechanics
Three dimensional models
SummonAdditionalLinks – databaseName: Springer Link
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5aPejBt_iokoM3DTb7aHa9lVpRkCK-6G3J5lELZVvarf59J9nsVkUFPS55bJhJZr6QmW8QOgGfQQ2TFOE-9wjcvyRJJeckBHDKU2E4nixl_i3rdqNeL75zSWHTMtq9fJK0lrpKdjPuPSImpKDhxaFP4kW0BO4uMgUb7h-eK_sbFaDXQBlCA9ZzqTLfz_HZHc0x5pdnUettrtb_t84NtObQJW4V22ETLahsC61-4BzcRvrGEUTAF5ZKjbErHNHHgywfYVDNebvVwQXF8wXuW15qYxSht4n2wDyTeE4Sjkca-5dYFOmPM_j724tSwx30dNV5bF8TV2yBCDiFORGhAGclAqll6kkGS29GkoeCBsKQ2jHGGpz6PGXao4pzgI1NL9aGABAAGU99fxfVslGm9hDmkVCUK6lpqAINFzpDgRpSEbJAKl_H-4iWMk-EYyI3BTGGScWhbGWYgAwTK8MExpxWY8YFD8evveulKhN3JqcJGKc4AAAWQPNZqbp588-zHfyt-yFa8Yz2bcRfHdXyyUwdoWXxmg-mk2O7V98BgW3g2w
  priority: 102
  providerName: Springer Nature
Title Integrating deep learning into CAD/CAE system: generative design and evaluation of 3D conceptual wheel
URI https://link.springer.com/article/10.1007/s00158-021-02953-9
https://www.proquest.com/docview/2579464349
Volume 64
WOSCitedRecordID wos000661442500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Engineering Database (subscription)
  customDbUrl:
  eissn: 1615-1488
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0008049
  issn: 1615-147X
  databaseCode: M7S
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1615-1488
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0008049
  issn: 1615-147X
  databaseCode: BENPR
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLink Contemporary
  customDbUrl:
  eissn: 1615-1488
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008049
  issn: 1615-147X
  databaseCode: RSV
  dateStart: 20000301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT8IwFG8UPOjBbyOKpAdv2kD3wTYvBhGiiSEE1HBburZDEjKQD_33fe06piZy8bJkWds1fa_v_dq-_h5Cl-AzqGKSIsxmFoH1lyCRYIy4AE5ZxBXHk6bMf_I6HX8wCLpmw21uwiozm6gNtZhwtUdeBdUKHHCfTnA7fScqa5Q6XTUpNDZRUbEkUB26119ZYj-FvwrUEOp4A3NpRl-dU2DBJypAoWYFrk2Cn44pR5u_Dki132nv_bfH-2jXIE7cSFXkAG3I5BDtfOMhPELxoyGNgDcspJxik0xiiEfJYoJBXNVmo4VT2ucbPNRc1cpQQmkVAYJZInBOHI4nMbbvMU-vRC7h759vUo6P0Uu79dx8ICYBA-EwMxeEuxwcGHdELCJLeDBQdV8wl1OHK6I7z_NqjNos8mKLSsYAStatIFakgADSWGTbJ6iQTBJ5ijDzuaRMipi60olhkadoUV3KXc8R0o6DEqLZ6IfcsJOrJBnjcMWrrCUWgsRCLbEQ6lyt6kxTbo61pcuZmEIzT-dhLqMSus4EnX_-u7Wz9a2do21L6ZaO-iujwmK2lBdoi38sRvNZBRXvWp1ur6K1FZ69_usX0xjtuQ
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT-MwEB4hFgn2sLy1vH2AE1jUTtIkKyGEeIiKUiEBUm_BsR1AQmlpy6L9U_zGnXGSFpDgxoFjFD-U-PPMZ3v8DcAm-gxBSlJceUpyXH8ZnhqleIDkVKWaNJ6cZH4zbLWidju-GIOX6i4MhVVWNtEZatPRtEe-i9CKfXSffrzffeSUNYpOV6sUGgUszuy_Z1yy9fcaRzi-W1KeHF8dnvIyqwDXCLcB14FGq6x9k5lUmrAm43pkVKCFr0m9LQzDmhKeSsNMCqsU8qO6jDNSukPmoVLaAEWT_wNphIxdqODl0PJHBd0mEsWFH7bLSzruqh6Rk4hTQAT2GHg8fusIR-z23YGs83Mn09_tD83Ar5JRs4NiCszCmM3n4OcrncV5yBqlKAY-MWNtl5XJMm7ZfT7oMITj7uHBMStkrf-wW6fFTY4AS1OEC1O5YSNhdNbJmHfEdHHl8wl7f76z9mEBrr_kQxdhPO_k9jcwFWkrlDWZCKyf4SKWZF8DoYPQN9bL4iUQ1WgnulRfpyQgD8lQN9ohJEGEJA4hCdbZHtbpFtojn5ZerWCRlHaon4wwsQQ7FbBGrz9ubfnz1jZg8vTqvJk0G62zFZiShGsX4bgK44Pek12DCf13cN_vrbsZwuDmqwH3H2TlRno
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1JSwMxFMeDVhE9uItL1Ry8aWgzS2fGW2ktFkspuNDbkMlSC2Va2ql-fV8yS6uoIB6HLBOyvX_Ie78gdAU2g2qSFGE2swicvwSJBGPEBXHKIq4ZTwaZ3_G6Xb_fD3pLUfzG2z2_kkxjGjSlKU4qE6EqReCbNvU-0e4FVStwbRKsojVHO9Lr8_rjS7EX-6kA1rKGUMfrZ2Ez39fx2TQt9OaXK1JjeVo7_2_zLtrOVCeup9NkD63IeB9tLbEID5BqZ-AI-MJCygnOHpQY4GGcjDEMWaVRv8Mp-vkWDwyvWm-WkFt7gWAWC7yAh-OxwnYT8zQscg5_f3-VcnSInlt3T417kj3CQDiszoRwl4MR445QIrKEB02v-YK5nDpcw-48z6syarPIUxaVjIGcrFmB0mBAEGossu0jVIrHsTxGmPlcUiaFoq50FBz0NBrVpdz1HCFtFZwgmvd_yDNCuX4oYxQWbGXThyH0YWj6MIQy10WZScrn-DV3OR_WMFursxA2rcABYeZA8k0-jIvkn2s7_Vv2S7TRa7bCTrv7cIY2LT0RjFNgGZWS6Vyeo3X-lgxn0wszhT8ADkHsow
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integrating+deep+learning+into+CAD%2FCAE+system%3A+generative+design+and+evaluation+of+3D+conceptual+wheel&rft.jtitle=Structural+and+multidisciplinary+optimization&rft.au=Yoo%2C+Soyoung&rft.au=Lee%2C+Sunghee&rft.au=Kim%2C+Seongsin&rft.au=Hwang%2C+Kwang+Hyeon&rft.date=2021-10-01&rft.issn=1615-147X&rft.eissn=1615-1488&rft.volume=64&rft.issue=4&rft.spage=2725&rft.epage=2747&rft_id=info:doi/10.1007%2Fs00158-021-02953-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00158_021_02953_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1615-147X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1615-147X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1615-147X&client=summon