Efficient processing of neighboring skyline queries with consideration of distance, quality, and cost

Currently, many of the processing techniques for the location - based queries provide information of a single type of spatial objects, based on their spatial closeness to the query object. However, in real-life applications the user may be interested in obtaining information about different types of...

Full description

Saved in:
Bibliographic Details
Published in:Computing Vol. 102; no. 2; pp. 523 - 550
Main Author: Huang, Yuan-Ko
Format: Journal Article
Language:English
Published: Vienna Springer Vienna 01.02.2020
Springer Nature B.V
Subjects:
ISSN:0010-485X, 1436-5057
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Currently, many of the processing techniques for the location - based queries provide information of a single type of spatial objects, based on their spatial closeness to the query object. However, in real-life applications the user may be interested in obtaining information about different types of objects, in terms of their quality, cost, and neighboring relationship. We term the different types of objects with better quality and closer to each other the Neighboring skyline set (or NS set ). Three new types of location-based queries, the Distance - based neighboring skyline query ( Dist - NS query ), the Cost - based neighboring skyline query ( Cost - NS query ), and the Budget - based neighboring skyline query ( BGT - NS query ), are presented to determine the NS sets according to user’s specific requirement. A R-tree-based index, the R a , c - tree , is first designed to manage each type of objects with their locations, attributes, and costs. Then, a simultaneous traversal of the R a , c - trees built on different types of objects is employed with several pruning criteria to prune the non-qualifying object sets as early as possible, so as to improve the query performance. Extensive experiments using the synthetic dataset demonstrate the efficiency and the effectiveness of the proposed algorithms.
AbstractList Currently, many of the processing techniques for the location - based queries provide information of a single type of spatial objects, based on their spatial closeness to the query object. However, in real-life applications the user may be interested in obtaining information about different types of objects, in terms of their quality, cost, and neighboring relationship. We term the different types of objects with better quality and closer to each other the Neighboring skyline set (or NS set ). Three new types of location-based queries, the Distance - based neighboring skyline query ( Dist - NS query ), the Cost - based neighboring skyline query ( Cost - NS query ), and the Budget - based neighboring skyline query ( BGT - NS query ), are presented to determine the NS sets according to user’s specific requirement. A R-tree-based index, the R a , c - tree , is first designed to manage each type of objects with their locations, attributes, and costs. Then, a simultaneous traversal of the R a , c - trees built on different types of objects is employed with several pruning criteria to prune the non-qualifying object sets as early as possible, so as to improve the query performance. Extensive experiments using the synthetic dataset demonstrate the efficiency and the effectiveness of the proposed algorithms.
Currently, many of the processing techniques for the location-based queries provide information of a single type of spatial objects, based on their spatial closeness to the query object. However, in real-life applications the user may be interested in obtaining information about different types of objects, in terms of their quality, cost, and neighboring relationship. We term the different types of objects with better quality and closer to each other the Neighboring skyline set (or NS set). Three new types of location-based queries, the Distance-based neighboring skyline query (Dist-NS query), the Cost-based neighboring skyline query (Cost-NS query), and the Budget-based neighboring skyline query (BGT-NS query), are presented to determine the NS sets according to user’s specific requirement. A R-tree-based index, the Ra,c-tree, is first designed to manage each type of objects with their locations, attributes, and costs. Then, a simultaneous traversal of the Ra,c-trees built on different types of objects is employed with several pruning criteria to prune the non-qualifying object sets as early as possible, so as to improve the query performance. Extensive experiments using the synthetic dataset demonstrate the efficiency and the effectiveness of the proposed algorithms.
Author Huang, Yuan-Ko
Author_xml – sequence: 1
  givenname: Yuan-Ko
  orcidid: 0000-0002-6061-3285
  surname: Huang
  fullname: Huang, Yuan-Ko
  email: huangyk@nkust.edu.tw
  organization: Department of Maritime Information and Technology, National Kaohsiung University of Science and Technology
BookMark eNp9kF1LwzAUhoNMcJv-Aa8K3q560jRpeyljfsDAGwXvQpqebpkznUmG7N-broLgxa7CIe9zPp4JGdnOIiHXFG4pQHHnAQQUKdAqjaWoUnFGxjRnIuXAixEZA1BI85K_X5CJ9xsAyFhZjQku2tZogzYkO9dp9N7YVdK1iUWzWted60v_cdgai8nXHp1Bn3ybsE50Z71p0KlgOtsTjfFBWY2zmFNbEw6zRNkm5ny4JOet2nq8-n2n5O1h8Tp_Spcvj8_z-2WqGa1CqvNSV5Uqm7ymNQrgFFEXlLFMlbVmDaeCZwXVnLEWygI4ZLypc03jp6gEsim5GfrGW-KyPshNt3c2jpQZ41lkS1bEVDmktOu8d9hKbcLxjOCU2UoKspcqB6kySpVHqVJENPuH7pz5VO5wGmID5He9TnR_W52gfgDJZIy3
CitedBy_id crossref_primary_10_1007_s10619_024_07448_2
crossref_primary_10_1007_s00607_024_01260_7
Cites_doi 10.1109/TKDE.2011.229
10.1109/ACCESS.2017.2688472
10.1145/170036.170075
10.1145/276305.276326
10.1007/s00778-005-0166-4
10.1109/TKDE.2006.185
10.1145/503099.503101
10.1109/TKDE.2006.15
10.1145/568271.223794
10.1016/j.is.2012.02.003
10.1145/320248.320255
10.1145/322092.322095
10.1109/ICDE.2001.914855
10.1145/342009.335415
10.1109/ICDE.2003.1260846
10.1016/B978-155860869-6/50032-9
10.1145/2484838.2484866
10.1016/B978-012722442-8/50052-5
10.1109/ICDE.2006.104
10.1145/1007568.1007638
10.1145/872757.872814
10.1109/ICDE.2007.368964
10.1109/ICDE.2007.367925
10.1145/564691.564730
ContentType Journal Article
Copyright Springer-Verlag GmbH Austria, part of Springer Nature 2019
Computing is a copyright of Springer, (2019). All Rights Reserved.
Copyright_xml – notice: Springer-Verlag GmbH Austria, part of Springer Nature 2019
– notice: Computing is a copyright of Springer, (2019). All Rights Reserved.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOI 10.1007/s00607-019-00769-6
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
Research Library (Alumni)
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
ProQuest Research Library
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList
ABI/INFORM Global (Corporate)
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISSN 1436-5057
EndPage 550
ExternalDocumentID 10_1007_s00607_019_00769_6
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29F
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
7WY
8AO
8FE
8FG
8FL
8G5
8TC
8UJ
8VB
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMOZ
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHQJS
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BKOMP
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EAD
EAP
EBA
EBLON
EBR
EBS
EBU
ECS
EDO
EIOEI
EJD
EMK
EPL
ESBYG
EST
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K1G
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAS
LLZTM
M0C
M0N
M2O
M4Y
MA-
MK~
ML~
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
QWB
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TH9
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z7Z
Z81
Z83
Z88
Z8M
Z8N
Z8R
Z8T
Z8U
Z8W
Z92
ZL0
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFKWF
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQUKI
Q9U
ID FETCH-LOGICAL-c319t-c48c99a8d4b1be6051eec71332a8bc3d5165271c533f08705025db4c1bc3696e3
IEDL.DBID 7WY
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000511621900010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0010-485X
IngestDate Wed Nov 26 14:53:07 EST 2025
Sat Nov 29 03:51:37 EST 2025
Tue Nov 18 20:31:53 EST 2025
Fri Feb 21 02:25:11 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Neighboring skyline set
Pruning criteria
68W40
68W01
Different types of objects
-
Location-based queries
65D18
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-c48c99a8d4b1be6051eec71332a8bc3d5165271c533f08705025db4c1bc3696e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6061-3285
PQID 2352271837
PQPubID 48322
PageCount 28
ParticipantIDs proquest_journals_2352271837
crossref_citationtrail_10_1007_s00607_019_00769_6
crossref_primary_10_1007_s00607_019_00769_6
springer_journals_10_1007_s00607_019_00769_6
PublicationCentury 2000
PublicationDate 20200200
2020-02-00
20200201
PublicationDateYYYYMMDD 2020-02-01
PublicationDate_xml – month: 2
  year: 2020
  text: 20200200
PublicationDecade 2020
PublicationPlace Vienna
PublicationPlace_xml – name: Vienna
– name: Wien
PublicationTitle Computing
PublicationTitleAbbrev Computing
PublicationYear 2020
Publisher Springer Vienna
Springer Nature B.V
Publisher_xml – name: Springer Vienna
– name: Springer Nature B.V
References Huang (CR13) 2017; 5
Hu, Lee (CR11) 2006; 18
CR19
Hjaltason, Samet (CR9) 1999; 24
CR18
CR17
Lin, Xu, Hu (CR21) 2013; 25
CR15
CR12
CR10
CR31
CR30
Bentley, Kung, Schkolnick, Thompson (CR2) 1978; 25
Hjaltason, Samet (CR8) 1998; 27
Benetis, Jensen, Karciauskas, Saltenis (CR1) 2006; 15
CR3
CR6
CR5
CR7
Huang, Lu, Tung (CR16) 2006; 18
CR29
Roussopoulos, Kelley, Vincent (CR26) 1995; 24
CR28
Brinkhoff, Kriegel, Seeger (CR4) 1993; 22
CR27
CR25
CR24
CR23
CR20
Mamoulis, Papadias (CR22) 2001; 26
Huang, Chang, Lee (CR14) 2012; 37
R Benetis (769_CR1) 2006; 15
X Lin (769_CR21) 2013; 25
Nick Roussopoulos (769_CR26) 1995; 24
769_CR7
769_CR6
769_CR5
Y-K Huang (769_CR13) 2017; 5
769_CR29
769_CR28
769_CR27
769_CR25
769_CR24
769_CR23
H Hu (769_CR11) 2006; 18
769_CR20
Z Huang (769_CR16) 2006; 18
Gísli R. Hjaltason (769_CR8) 1998; 27
Thomas Brinkhoff (769_CR4) 1993; 22
GR Hjaltason (769_CR9) 1999; 24
769_CR19
N Mamoulis (769_CR22) 2001; 26
769_CR3
769_CR18
769_CR17
769_CR15
JL Bentley (769_CR2) 1978; 25
769_CR12
769_CR10
769_CR31
769_CR30
Y-K Huang (769_CR14) 2012; 37
References_xml – volume: 25
  start-page: 835
  issue: 4
  year: 2013
  end-page: 849
  ident: CR21
  article-title: Range-based skyline queries in mobile environments
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2011.229
– volume: 5
  start-page: 4887
  year: 2017
  end-page: 4899
  ident: CR13
  article-title: Location-based aggregate queries for heterogeneous neighboring objects
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2688472
– ident: CR18
– volume: 22
  start-page: 237
  issue: 2
  year: 1993
  end-page: 246
  ident: CR4
  article-title: Efficient processing of spatial joins using R-trees
  publication-title: ACM SIGMOD Record
  doi: 10.1145/170036.170075
– volume: 27
  start-page: 237
  issue: 2
  year: 1998
  end-page: 248
  ident: CR8
  article-title: Incremental distance join algorithms for spatial databases
  publication-title: ACM SIGMOD Record
  doi: 10.1145/276305.276326
– ident: CR12
– ident: CR30
– volume: 15
  start-page: 229
  issue: 3
  year: 2006
  end-page: 249
  ident: CR1
  article-title: Nearest neighbor and reverse nearest neighbor queries for moving objects
  publication-title: VLDB Journal
  doi: 10.1007/s00778-005-0166-4
– ident: CR10
– ident: CR6
– ident: CR29
– volume: 18
  start-page: 1645
  year: 2006
  end-page: 1658
  ident: CR16
  article-title: Continuous skyline queries for moving objects
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2006.185
– ident: CR25
– ident: CR27
– ident: CR23
– ident: CR19
– ident: CR3
– ident: CR15
– volume: 26
  start-page: 424
  issue: 4
  year: 2001
  end-page: 475
  ident: CR22
  article-title: Multiway spatial joins
  publication-title: ACM Transactions on Database Systems
  doi: 10.1145/503099.503101
– ident: CR17
– volume: 18
  start-page: 78
  issue: 1
  year: 2006
  end-page: 91
  ident: CR11
  article-title: Range nearest-neighbor query
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2006.15
– ident: CR31
– volume: 24
  start-page: 71
  issue: 2
  year: 1995
  end-page: 79
  ident: CR26
  article-title: Nearest neighbor queries
  publication-title: ACM SIGMOD Record
  doi: 10.1145/568271.223794
– volume: 37
  start-page: 611
  year: 2012
  end-page: 633
  ident: CR14
  article-title: Continuous distance-based skyline queries in road networks
  publication-title: Information Systems
  doi: 10.1016/j.is.2012.02.003
– ident: CR5
– ident: CR7
– volume: 24
  start-page: 265
  issue: 2
  year: 1999
  end-page: 318
  ident: CR9
  article-title: Distance browsing in spatial databases
  publication-title: ACM Transactions on Database Systems
  doi: 10.1145/320248.320255
– ident: CR28
– ident: CR24
– volume: 25
  start-page: 536
  issue: 4
  year: 1978
  end-page: 543
  ident: CR2
  article-title: On the average number of maxima in a set of vectors and applications
  publication-title: Journal of the ACM
  doi: 10.1145/322092.322095
– ident: CR20
– ident: 769_CR3
  doi: 10.1109/ICDE.2001.914855
– volume: 18
  start-page: 78
  issue: 1
  year: 2006
  ident: 769_CR11
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2006.15
– ident: 769_CR15
– ident: 769_CR18
  doi: 10.1145/342009.335415
– ident: 769_CR6
  doi: 10.1109/ICDE.2003.1260846
– ident: 769_CR19
  doi: 10.1016/B978-155860869-6/50032-9
– ident: 769_CR31
  doi: 10.1145/2484838.2484866
– ident: 769_CR17
  doi: 10.1016/B978-012722442-8/50052-5
– volume: 26
  start-page: 424
  issue: 4
  year: 2001
  ident: 769_CR22
  publication-title: ACM Transactions on Database Systems
  doi: 10.1145/503099.503101
– volume: 27
  start-page: 237
  issue: 2
  year: 1998
  ident: 769_CR8
  publication-title: ACM SIGMOD Record
  doi: 10.1145/276305.276326
– volume: 15
  start-page: 229
  issue: 3
  year: 2006
  ident: 769_CR1
  publication-title: VLDB Journal
  doi: 10.1007/s00778-005-0166-4
– ident: 769_CR28
– volume: 24
  start-page: 265
  issue: 2
  year: 1999
  ident: 769_CR9
  publication-title: ACM Transactions on Database Systems
  doi: 10.1145/320248.320255
– volume: 25
  start-page: 835
  issue: 4
  year: 2013
  ident: 769_CR21
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2011.229
– ident: 769_CR20
  doi: 10.1109/ICDE.2006.104
– volume: 25
  start-page: 536
  issue: 4
  year: 1978
  ident: 769_CR2
  publication-title: Journal of the ACM
  doi: 10.1145/322092.322095
– volume: 37
  start-page: 611
  year: 2012
  ident: 769_CR14
  publication-title: Information Systems
  doi: 10.1016/j.is.2012.02.003
– volume: 18
  start-page: 1645
  year: 2006
  ident: 769_CR16
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2006.185
– ident: 769_CR23
  doi: 10.1145/1007568.1007638
– ident: 769_CR24
– ident: 769_CR25
  doi: 10.1145/872757.872814
– ident: 769_CR29
– ident: 769_CR5
  doi: 10.1109/ICDE.2007.368964
– ident: 769_CR10
– ident: 769_CR27
– volume: 22
  start-page: 237
  issue: 2
  year: 1993
  ident: 769_CR4
  publication-title: ACM SIGMOD Record
  doi: 10.1145/170036.170075
– ident: 769_CR7
  doi: 10.1109/ICDE.2007.367925
– ident: 769_CR12
– volume: 24
  start-page: 71
  issue: 2
  year: 1995
  ident: 769_CR26
  publication-title: ACM SIGMOD Record
  doi: 10.1145/568271.223794
– ident: 769_CR30
  doi: 10.1145/564691.564730
– volume: 5
  start-page: 4887
  year: 2017
  ident: 769_CR13
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2688472
SSID ssj0002389
Score 2.2100341
Snippet Currently, many of the processing techniques for the location - based queries provide information of a single type of spatial objects, based on their spatial...
Currently, many of the processing techniques for the location-based queries provide information of a single type of spatial objects, based on their spatial...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 523
SubjectTerms Algorithms
Artificial Intelligence
Computer Appl. in Administrative Data Processing
Computer Communication Networks
Computer Science
Information Systems Applications (incl.Internet)
Queries
Query processing
Software Engineering
SummonAdditionalLinks – databaseName: SpringerLink Contemporary (1997 - Present)
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFH_o9KAHp1NxOiUHby6wtOlHjiIbXhyCH-xWmjQFUepYq7D_3pc07VBU0ENP-Sp5Sd7vJe_9HsB5FEXSF0xQHuSKcilHFD9JY6Xz0NeGMKVONhFNp_FsJm5dUFjZeLs3T5L2pG6D3Qx1iHGTFNQ8HwkarsNGYNhmjI1-99iev6iEatCLJwyPg5kLlfm-j8_qaIUxvzyLWm0z6f7vP3dhx6FLclkvhz1Y00UPuk3mBuI2cg-2b1q21nIf9NjySKD6IfM6bgDHI685Kcy9qbQueqR8XhpESvDPjXVNzAUuUS7dpxWvaZEZOIpDDEkdrbkckrTIsF5ZHcDDZHx_dU1d-gWqcF9WVPFYCZHGGZdMajR7mNbK2LReGkvlZwELAy9iCgFjPsJtHyB8yiRXDAtDEWr_EDrFa6GPgGjhaTTEopRngus8FSoWaGuGMffzQCnWB9ZIIVGOm9ykyHhJWlZlO6sJzmpiZzUJ-3DRtpnXzBy_1h40wk3cLi0Tz6BPVM5-1IdhI8xV8c-9Hf-t-glsecZMt87eA-hUizd9CpvqvXoqF2d29X4AtXjonw
  priority: 102
  providerName: Springer Nature
Title Efficient processing of neighboring skyline queries with consideration of distance, quality, and cost
URI https://link.springer.com/article/10.1007/s00607-019-00769-6
https://www.proquest.com/docview/2352271837
Volume 102
WOSCitedRecordID wos000511621900010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1436-5057
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002389
  issn: 0010-485X
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR3JTuMw9IllDsyBHU3Z5AM3atEkzuITAlSEhCgVzAyFSxQ7joRAaafpIPH3vOc4rUCCC4c8KfISR89-m98CcBDHsQqkJ7kIC82FUh2Oj-KJNkUUGEqYUhebiHu9ZDCQfWdwq5xbZUMTLaHOh5ps5Ec-SQpISIP4ePSPU9Uoul11JTTmYREZdUgVDOK7-yklRnZUi79Ia0QSDlzQjA2do0Qk5HQpOV1GSR69Z0wzafPDBanlO-cr313xKiw7iZOd1FtkDeZMuQ4rTTUH5g73Ovy8mmZwrTbAdG1uCWRJbFTHEuDq2LBgJdlSlXXbY9XTK0mpDFdFGjcjoy7TrgSoRTmNyElExU-0WR3B-dpmWZljv2qyCX_Ou7_PLrgrycA1ntUJ1yLRUmZJLpSnDKpCnjGa9Fw_S5QO8tCLQvxnjUJk0UFSEKJIlSuhPWyMZGSCLVgoh6X5BcxI36ByFmcil8IUmdSJRP0zSkRQhFp7LfAafKTa5SunshnP6TTTssVhijhMLQ7TqAWH0zGjOlvHl713G8Sl7uRW6QxrLWg3qJ81fz7b9tez7cCST6q6dfjehYXJ-L_Zgx_6ZfJYjfftvt2HxdNur3-Db5cxR3jVOSPoXyPshw8Ib27_vgH6lPkH
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Nb9MwFH8qBYntsEFhoqyAD3Ci1pbESewDmiZY1albxaFIvYXYcSS0KS1NYeo_tb9x7zlJK5DorQcOOflLsX9-_vn5fQC8j-NYB8pTXIS54ULrU46f5tLYPAosBUypkk3E47GcTtXXFtw3vjBkVtnIRCeos5khHfmJT0wBBWkQn81_csoaRa-rTQqNChYju7rDK1v56fILru8H3x9cTD4PeZ1VgBuE25IbIY1SqcyE9rRFNu9Za-iq5qdSmyALvSjEgQzyoPwU0RwiK8i0MB4WRiqyAfb7CB6LQEa0o0YxX0t-PP4quo2yTchwWjvpOFc9CnxCRp6K0-OX4tGfB-GG3f71IOvOucHh_zZDz-CgZtTsvNoCz6Fliw4cNtkqWC28OrB_vY5QW74Ae-FiZ-CRy-aVrwTOBpvlrCBdsXZmiay8WRELZzgLpFFgpLRmpk5x6iBNLTKi4DhEn1Ueqqs-S4sM65XLl_BtJ79-BO1iVthXwKzyLV4-41RkStg8VUYqvF9HUgR5aIzXBa9Z_8TU8dgpLchtso4k7TCTIGYSh5kk6sLHdZt5FY1ka-1eA5SklkxlskFJF_oN1DbF_-7t9fbe3sHT4eT6Krm6HI-OYc8ntYQzbu9Be7n4Zd_AE_N7-aNcvHV7hsH3XUPwASO-Ta4
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB5RQBUceBXEtjx8gFPXgiTOw4cKtbArELBaISrtLY0dR0Kg7EK2rfav9dd1xnF2BVK5ceghpyS24nye-WY8D4CDOI5VID3JRVhoLpQ65ngpnmhTRIGhgil1s4m410sGA9mfgz9NLgyFVTYy0QrqfKjJR37kE1NAQRrER4ULi-ifdU9Gj5w6SNFJa9NOo4bIpZn8RvOt-nJxhv_60Pe7ndvTc-46DHCN0BtzLRItZZbkQnnKILP3jNFktvlZonSQh14U4qQaOVFxjMgOkSHkSmgPb0YyMgGO-w4WYvxaNPwWvnV6_ZupHkBlWJNvlHQiCQcuZccm7lEZFAr5lJyOwiSPnqvFGdd9cTxrtV539X9erzVYcVybfa03xzrMmXIDVps-FsyJtQ1Yvp7Wrq0-gOnYqhqojNmozqLAlWHDgpXkRVY2YJFV9xPi5wxXhHwNjNzZTLvmpxbs9EZO5BynaLM6d3XSZlmZ43PVeBO-v8mnb8F8OSzNNjAjfYNmaZyJXApTZFInEi3vKBFBEWrttcBrsJBqV6mdGoY8pNMa0xY_KeIntfhJoxZ8nr4zquuUvPr0TgOa1MmsKp0hpgXtBnaz2_8e7ePro-3De0ReenXRu_wESz75K2zU-w7Mj59-ml1Y1L_Gd9XTnttADH68NQb_Al0KWAA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+processing+of+neighboring+skyline+queries+with+consideration+of+distance%2C+quality%2C+and+cost&rft.jtitle=Computing&rft.au=Huang%2C+Yuan-Ko&rft.date=2020-02-01&rft.issn=0010-485X&rft.eissn=1436-5057&rft.volume=102&rft.issue=2&rft.spage=523&rft.epage=550&rft_id=info:doi/10.1007%2Fs00607-019-00769-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00607_019_00769_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-485X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-485X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-485X&client=summon