Efficient processing of neighboring skyline queries with consideration of distance, quality, and cost
Currently, many of the processing techniques for the location - based queries provide information of a single type of spatial objects, based on their spatial closeness to the query object. However, in real-life applications the user may be interested in obtaining information about different types of...
Uloženo v:
| Vydáno v: | Computing Ročník 102; číslo 2; s. 523 - 550 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Vienna
Springer Vienna
01.02.2020
Springer Nature B.V |
| Témata: | |
| ISSN: | 0010-485X, 1436-5057 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Currently, many of the processing techniques for the
location
-
based queries
provide information of a single type of spatial objects, based on their spatial closeness to the query object. However, in real-life applications the user may be interested in obtaining information about different types of objects, in terms of their quality, cost, and neighboring relationship. We term the different types of objects with better quality and closer to each other the
Neighboring skyline set
(or
NS set
). Three new types of location-based queries, the
Distance
-
based neighboring skyline query
(
Dist
-
NS query
), the
Cost
-
based neighboring skyline query
(
Cost
-
NS query
), and the
Budget
-
based neighboring skyline query
(
BGT
-
NS query
), are presented to determine the
NS sets
according to user’s specific requirement. A R-tree-based index, the
R
a
,
c
-
tree
, is first designed to manage each type of objects with their locations, attributes, and costs. Then, a simultaneous traversal of the
R
a
,
c
-
trees
built on different types of objects is employed with several pruning criteria to prune the non-qualifying object sets as early as possible, so as to improve the query performance. Extensive experiments using the synthetic dataset demonstrate the efficiency and the effectiveness of the proposed algorithms. |
|---|---|
| AbstractList | Currently, many of the processing techniques for the
location
-
based queries
provide information of a single type of spatial objects, based on their spatial closeness to the query object. However, in real-life applications the user may be interested in obtaining information about different types of objects, in terms of their quality, cost, and neighboring relationship. We term the different types of objects with better quality and closer to each other the
Neighboring skyline set
(or
NS set
). Three new types of location-based queries, the
Distance
-
based neighboring skyline query
(
Dist
-
NS query
), the
Cost
-
based neighboring skyline query
(
Cost
-
NS query
), and the
Budget
-
based neighboring skyline query
(
BGT
-
NS query
), are presented to determine the
NS sets
according to user’s specific requirement. A R-tree-based index, the
R
a
,
c
-
tree
, is first designed to manage each type of objects with their locations, attributes, and costs. Then, a simultaneous traversal of the
R
a
,
c
-
trees
built on different types of objects is employed with several pruning criteria to prune the non-qualifying object sets as early as possible, so as to improve the query performance. Extensive experiments using the synthetic dataset demonstrate the efficiency and the effectiveness of the proposed algorithms. Currently, many of the processing techniques for the location-based queries provide information of a single type of spatial objects, based on their spatial closeness to the query object. However, in real-life applications the user may be interested in obtaining information about different types of objects, in terms of their quality, cost, and neighboring relationship. We term the different types of objects with better quality and closer to each other the Neighboring skyline set (or NS set). Three new types of location-based queries, the Distance-based neighboring skyline query (Dist-NS query), the Cost-based neighboring skyline query (Cost-NS query), and the Budget-based neighboring skyline query (BGT-NS query), are presented to determine the NS sets according to user’s specific requirement. A R-tree-based index, the Ra,c-tree, is first designed to manage each type of objects with their locations, attributes, and costs. Then, a simultaneous traversal of the Ra,c-trees built on different types of objects is employed with several pruning criteria to prune the non-qualifying object sets as early as possible, so as to improve the query performance. Extensive experiments using the synthetic dataset demonstrate the efficiency and the effectiveness of the proposed algorithms. |
| Author | Huang, Yuan-Ko |
| Author_xml | – sequence: 1 givenname: Yuan-Ko orcidid: 0000-0002-6061-3285 surname: Huang fullname: Huang, Yuan-Ko email: huangyk@nkust.edu.tw organization: Department of Maritime Information and Technology, National Kaohsiung University of Science and Technology |
| BookMark | eNp9kF1LwzAUhoNMcJv-Aa8K3q560jRpeyljfsDAGwXvQpqebpkznUmG7N-broLgxa7CIe9zPp4JGdnOIiHXFG4pQHHnAQQUKdAqjaWoUnFGxjRnIuXAixEZA1BI85K_X5CJ9xsAyFhZjQku2tZogzYkO9dp9N7YVdK1iUWzWted60v_cdgai8nXHp1Bn3ybsE50Z71p0KlgOtsTjfFBWY2zmFNbEw6zRNkm5ny4JOet2nq8-n2n5O1h8Tp_Spcvj8_z-2WqGa1CqvNSV5Uqm7ymNQrgFFEXlLFMlbVmDaeCZwXVnLEWygI4ZLypc03jp6gEsim5GfrGW-KyPshNt3c2jpQZ41lkS1bEVDmktOu8d9hKbcLxjOCU2UoKspcqB6kySpVHqVJENPuH7pz5VO5wGmID5He9TnR_W52gfgDJZIy3 |
| CitedBy_id | crossref_primary_10_1007_s10619_024_07448_2 crossref_primary_10_1007_s00607_024_01260_7 |
| Cites_doi | 10.1109/TKDE.2011.229 10.1109/ACCESS.2017.2688472 10.1145/170036.170075 10.1145/276305.276326 10.1007/s00778-005-0166-4 10.1109/TKDE.2006.185 10.1145/503099.503101 10.1109/TKDE.2006.15 10.1145/568271.223794 10.1016/j.is.2012.02.003 10.1145/320248.320255 10.1145/322092.322095 10.1109/ICDE.2001.914855 10.1145/342009.335415 10.1109/ICDE.2003.1260846 10.1016/B978-155860869-6/50032-9 10.1145/2484838.2484866 10.1016/B978-012722442-8/50052-5 10.1109/ICDE.2006.104 10.1145/1007568.1007638 10.1145/872757.872814 10.1109/ICDE.2007.368964 10.1109/ICDE.2007.367925 10.1145/564691.564730 |
| ContentType | Journal Article |
| Copyright | Springer-Verlag GmbH Austria, part of Springer Nature 2019 Computing is a copyright of Springer, (2019). All Rights Reserved. |
| Copyright_xml | – notice: Springer-Verlag GmbH Austria, part of Springer Nature 2019 – notice: Computing is a copyright of Springer, (2019). All Rights Reserved. |
| DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI Q9U |
| DOI | 10.1007/s00607-019-00769-6 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Global (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) Research Library (Alumni Edition) ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One Community College ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM global Computing Database ProQuest research library Research Library (Corporate) ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central Basic |
| DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | ABI/INFORM Global (Corporate) |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics Computer Science |
| EISSN | 1436-5057 |
| EndPage | 550 |
| ExternalDocumentID | 10_1007_s00607_019_00769_6 |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C -~X .4S .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29F 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 6TJ 78A 7WY 8AO 8FE 8FG 8FL 8G5 8TC 8UJ 8VB 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMOZ AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHQJS AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKVCP ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. B0M BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BKOMP BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DWQXO EAD EAP EBA EBLON EBR EBS EBU ECS EDO EIOEI EJD EMK EPL ESBYG EST ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K1G K60 K6V K6~ K7- KDC KOV KOW LAS LLZTM M0C M0N M2O M4Y MA- MK~ ML~ N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOK QOS QWB R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TH9 TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7X Z7Z Z81 Z83 Z88 Z8M Z8N Z8R Z8T Z8U Z8W Z92 ZL0 ZMTXR ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFKWF AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 7SC 7XB 8AL 8FD 8FK JQ2 L.- L7M L~C L~D MBDVC PKEHL PQEST PQUKI Q9U |
| ID | FETCH-LOGICAL-c319t-c48c99a8d4b1be6051eec71332a8bc3d5165271c533f08705025db4c1bc3696e3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000511621900010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0010-485X |
| IngestDate | Wed Nov 26 14:53:07 EST 2025 Sat Nov 29 03:51:37 EST 2025 Tue Nov 18 20:31:53 EST 2025 Fri Feb 21 02:25:11 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Neighboring skyline set Pruning criteria 68W40 68W01 Different types of objects - Location-based queries 65D18 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-c48c99a8d4b1be6051eec71332a8bc3d5165271c533f08705025db4c1bc3696e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-6061-3285 |
| PQID | 2352271837 |
| PQPubID | 48322 |
| PageCount | 28 |
| ParticipantIDs | proquest_journals_2352271837 crossref_citationtrail_10_1007_s00607_019_00769_6 crossref_primary_10_1007_s00607_019_00769_6 springer_journals_10_1007_s00607_019_00769_6 |
| PublicationCentury | 2000 |
| PublicationDate | 20200200 2020-02-00 20200201 |
| PublicationDateYYYYMMDD | 2020-02-01 |
| PublicationDate_xml | – month: 2 year: 2020 text: 20200200 |
| PublicationDecade | 2020 |
| PublicationPlace | Vienna |
| PublicationPlace_xml | – name: Vienna – name: Wien |
| PublicationTitle | Computing |
| PublicationTitleAbbrev | Computing |
| PublicationYear | 2020 |
| Publisher | Springer Vienna Springer Nature B.V |
| Publisher_xml | – name: Springer Vienna – name: Springer Nature B.V |
| References | Huang (CR13) 2017; 5 Hu, Lee (CR11) 2006; 18 CR19 Hjaltason, Samet (CR9) 1999; 24 CR18 CR17 Lin, Xu, Hu (CR21) 2013; 25 CR15 CR12 CR10 CR31 CR30 Bentley, Kung, Schkolnick, Thompson (CR2) 1978; 25 Hjaltason, Samet (CR8) 1998; 27 Benetis, Jensen, Karciauskas, Saltenis (CR1) 2006; 15 CR3 CR6 CR5 CR7 Huang, Lu, Tung (CR16) 2006; 18 CR29 Roussopoulos, Kelley, Vincent (CR26) 1995; 24 CR28 Brinkhoff, Kriegel, Seeger (CR4) 1993; 22 CR27 CR25 CR24 CR23 CR20 Mamoulis, Papadias (CR22) 2001; 26 Huang, Chang, Lee (CR14) 2012; 37 R Benetis (769_CR1) 2006; 15 X Lin (769_CR21) 2013; 25 Nick Roussopoulos (769_CR26) 1995; 24 769_CR7 769_CR6 769_CR5 Y-K Huang (769_CR13) 2017; 5 769_CR29 769_CR28 769_CR27 769_CR25 769_CR24 769_CR23 H Hu (769_CR11) 2006; 18 769_CR20 Z Huang (769_CR16) 2006; 18 Gísli R. Hjaltason (769_CR8) 1998; 27 Thomas Brinkhoff (769_CR4) 1993; 22 GR Hjaltason (769_CR9) 1999; 24 769_CR19 N Mamoulis (769_CR22) 2001; 26 769_CR3 769_CR18 769_CR17 769_CR15 JL Bentley (769_CR2) 1978; 25 769_CR12 769_CR10 769_CR31 769_CR30 Y-K Huang (769_CR14) 2012; 37 |
| References_xml | – volume: 25 start-page: 835 issue: 4 year: 2013 end-page: 849 ident: CR21 article-title: Range-based skyline queries in mobile environments publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2011.229 – volume: 5 start-page: 4887 year: 2017 end-page: 4899 ident: CR13 article-title: Location-based aggregate queries for heterogeneous neighboring objects publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2688472 – ident: CR18 – volume: 22 start-page: 237 issue: 2 year: 1993 end-page: 246 ident: CR4 article-title: Efficient processing of spatial joins using R-trees publication-title: ACM SIGMOD Record doi: 10.1145/170036.170075 – volume: 27 start-page: 237 issue: 2 year: 1998 end-page: 248 ident: CR8 article-title: Incremental distance join algorithms for spatial databases publication-title: ACM SIGMOD Record doi: 10.1145/276305.276326 – ident: CR12 – ident: CR30 – volume: 15 start-page: 229 issue: 3 year: 2006 end-page: 249 ident: CR1 article-title: Nearest neighbor and reverse nearest neighbor queries for moving objects publication-title: VLDB Journal doi: 10.1007/s00778-005-0166-4 – ident: CR10 – ident: CR6 – ident: CR29 – volume: 18 start-page: 1645 year: 2006 end-page: 1658 ident: CR16 article-title: Continuous skyline queries for moving objects publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2006.185 – ident: CR25 – ident: CR27 – ident: CR23 – ident: CR19 – ident: CR3 – ident: CR15 – volume: 26 start-page: 424 issue: 4 year: 2001 end-page: 475 ident: CR22 article-title: Multiway spatial joins publication-title: ACM Transactions on Database Systems doi: 10.1145/503099.503101 – ident: CR17 – volume: 18 start-page: 78 issue: 1 year: 2006 end-page: 91 ident: CR11 article-title: Range nearest-neighbor query publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2006.15 – ident: CR31 – volume: 24 start-page: 71 issue: 2 year: 1995 end-page: 79 ident: CR26 article-title: Nearest neighbor queries publication-title: ACM SIGMOD Record doi: 10.1145/568271.223794 – volume: 37 start-page: 611 year: 2012 end-page: 633 ident: CR14 article-title: Continuous distance-based skyline queries in road networks publication-title: Information Systems doi: 10.1016/j.is.2012.02.003 – ident: CR5 – ident: CR7 – volume: 24 start-page: 265 issue: 2 year: 1999 end-page: 318 ident: CR9 article-title: Distance browsing in spatial databases publication-title: ACM Transactions on Database Systems doi: 10.1145/320248.320255 – ident: CR28 – ident: CR24 – volume: 25 start-page: 536 issue: 4 year: 1978 end-page: 543 ident: CR2 article-title: On the average number of maxima in a set of vectors and applications publication-title: Journal of the ACM doi: 10.1145/322092.322095 – ident: CR20 – ident: 769_CR3 doi: 10.1109/ICDE.2001.914855 – volume: 18 start-page: 78 issue: 1 year: 2006 ident: 769_CR11 publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2006.15 – ident: 769_CR15 – ident: 769_CR18 doi: 10.1145/342009.335415 – ident: 769_CR6 doi: 10.1109/ICDE.2003.1260846 – ident: 769_CR19 doi: 10.1016/B978-155860869-6/50032-9 – ident: 769_CR31 doi: 10.1145/2484838.2484866 – ident: 769_CR17 doi: 10.1016/B978-012722442-8/50052-5 – volume: 26 start-page: 424 issue: 4 year: 2001 ident: 769_CR22 publication-title: ACM Transactions on Database Systems doi: 10.1145/503099.503101 – volume: 27 start-page: 237 issue: 2 year: 1998 ident: 769_CR8 publication-title: ACM SIGMOD Record doi: 10.1145/276305.276326 – volume: 15 start-page: 229 issue: 3 year: 2006 ident: 769_CR1 publication-title: VLDB Journal doi: 10.1007/s00778-005-0166-4 – ident: 769_CR28 – volume: 24 start-page: 265 issue: 2 year: 1999 ident: 769_CR9 publication-title: ACM Transactions on Database Systems doi: 10.1145/320248.320255 – volume: 25 start-page: 835 issue: 4 year: 2013 ident: 769_CR21 publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2011.229 – ident: 769_CR20 doi: 10.1109/ICDE.2006.104 – volume: 25 start-page: 536 issue: 4 year: 1978 ident: 769_CR2 publication-title: Journal of the ACM doi: 10.1145/322092.322095 – volume: 37 start-page: 611 year: 2012 ident: 769_CR14 publication-title: Information Systems doi: 10.1016/j.is.2012.02.003 – volume: 18 start-page: 1645 year: 2006 ident: 769_CR16 publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2006.185 – ident: 769_CR23 doi: 10.1145/1007568.1007638 – ident: 769_CR24 – ident: 769_CR25 doi: 10.1145/872757.872814 – ident: 769_CR29 – ident: 769_CR5 doi: 10.1109/ICDE.2007.368964 – ident: 769_CR10 – ident: 769_CR27 – volume: 22 start-page: 237 issue: 2 year: 1993 ident: 769_CR4 publication-title: ACM SIGMOD Record doi: 10.1145/170036.170075 – ident: 769_CR7 doi: 10.1109/ICDE.2007.367925 – ident: 769_CR12 – volume: 24 start-page: 71 issue: 2 year: 1995 ident: 769_CR26 publication-title: ACM SIGMOD Record doi: 10.1145/568271.223794 – ident: 769_CR30 doi: 10.1145/564691.564730 – volume: 5 start-page: 4887 year: 2017 ident: 769_CR13 publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2688472 |
| SSID | ssj0002389 |
| Score | 2.2100341 |
| Snippet | Currently, many of the processing techniques for the
location
-
based queries
provide information of a single type of spatial objects, based on their spatial... Currently, many of the processing techniques for the location-based queries provide information of a single type of spatial objects, based on their spatial... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 523 |
| SubjectTerms | Algorithms Artificial Intelligence Computer Appl. in Administrative Data Processing Computer Communication Networks Computer Science Information Systems Applications (incl.Internet) Queries Query processing Software Engineering |
| SummonAdditionalLinks | – databaseName: ABI/INFORM Collection dbid: 7WY link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagMMBAoYAoFOSBjVqQh5N4Qgi1YqFiAFGmyLFdCYHS0gSk_nvuHCcVSHRhju04-ey7z-d7EHIex5n0IhkwLTzOQj0RLNN-xELFZabQr1BLW2wiHo2S8Vg8OINb4dwqa5loBbWeKrSRX_rIFECQBvH17INh1Si8XXUlNNbJBihqjhUM4ueXRhKDOqroL8iaMOFjFzRjQ-cwEQk6XQqGl1GCRT8V05Jt_rogtXpn2P7vjHfJjmOc9KZaIntkzeQd0q6rOVC3uTtk-77J4FrsEzOwuSVAJdFZFUsAs6PTCc3RlppZtz1avC2QpVKYFZ64KRp1qXIlQC3k2EMjRYVX9GkVwbnoU5lraFeUB-RpOHi8vWOuJANTsFdLpsJECSETHWZeZuAo5Bmj8JzryyRTgeZexOGbFZDIyRWIAg6USmeh8uBhJCITHJJWPs3NEaER_BrM_xXLyISB9IWMfcNjAQJ3gnkAu8Sr8UiVy1eOZTPe0ybTssUwBQxTi2EKfS6aPrMqW8fK1r0auNTt3CJdotYl_Rr65eO_RztePdoJ2fLxqG4dvnukVc4_zSnZVF_lazE_s-v2Gxa88p8 priority: 102 providerName: ProQuest |
| Title | Efficient processing of neighboring skyline queries with consideration of distance, quality, and cost |
| URI | https://link.springer.com/article/10.1007/s00607-019-00769-6 https://www.proquest.com/docview/2352271837 |
| Volume | 102 |
| WOSCitedRecordID | wos000511621900010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1436-5057 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002389 issn: 0010-485X databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxEB5BwoEeCKWg8op84NZYYh9er48FJaqECBG0NPSy8tqOhEALYgNS_n1nvI-oqCC1F0ur9Usej2fGnvkG4EjKXAeJjrhVgeCxnSme2zDhsRE6N-RXaLVPNiHH43Q6VZM6KKxsvN2bJ0l_UrfBbgQdQm6SitPzkeLJKnQFoc2QjX513Z6_KIQqpRdPmDgV0zpU5u99_CmOljrmq2dRL21Gvf-b5yZs1Nol-1pth4-w4oot6DWZG1jNyFvw4bxFay0_gRt6HAkUP-yxihvA8djDjBV0b5p7Fz1W3i1II2U4c7KuGV3gMlOn-_TkpRaW1FEcYsCqaM3FgOnCYr1yvg0_RsPvp994nX6BG-TLOTdxapTSqY3zIHdo9gTOGbJpQ53mJrIiSEQoA4MK4-wY2V6g-mTz2AT4M1GJi3agUzwU7jOwBCUgYX1Jnbg40qHSMnRCKjxcZ4T5twtBQ4XM1NjklCLjPmtRlf2qZriqmV_VDNt8ads8Vsgc79Y-aIib1VxaZiFpnzi1SO7CoCHm8vfbve39W_V9WA_JTPfO3gfQmT89u0NYMy_z2_KpD6vy500fuifD8eQSv84kx_L8-JTK8ALLifjV93v8N0G77s8 |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT-MwEB7xWInlAMtjxRsflhO1IC8nPiCEoAhUqDiA1FtwbFdCu0oLKaD-KX4jM07SipXojQPn-KHYn2c-j-cB8CeOM-UJFXAjvYiHpit5ZnzBQx2pTJNfoVGu2ETcbiedjryZgrc6FobcKmuZ6AS16WmykR_4xBRQkAbxcf-RU9Uoel2tS2iUsGjZ4Ste2YqjyzPc3z3fP2_enl7wqqoA1wi3AddhoqVUiQkzL7PI5j1rNV3VfJVkOjCRJyKcSCMP6h4imiNkBSYLtYcfhRQ2wHGnYTYMEkEnqhXzkeRH9VfSbZRtYRJ1qiAdF6pHiU_IyVNyevySXHxUhGN2-9-DrNNz54vfbYV-wULFqNlJeQSWYMrmy7BYV6tglfBahvnrUYbaYgVs0-XOQJXL-mWsBK4G63VZTrbizLklsuLvkFg4w1UgiwIjozXTVYlTB2nqYYiC4xQNVkaoDhtM5QbbFYNVuPuSX_8NM3kvt2vABG4F5TeLlbBhoHypYt9GsUSF0qU8h-vg1fuf6iofO5UF-ZeOMkk7zKSImdRhJsU--6M-_TIbycTWWzVQ0koyFekYJevQqKE2_vz5aBuTR9uFuYvb66v06rLd2oSfPpklnHP7FswMnp7tNvzQL4OH4mnHnRkG918NwXcAuk2c |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LTxsxEB6lAVVwKI-CoKTgA5waC_a9PqCqLYlAtFGEqJTb1mt7JQTaBDZQ5a_113XG603USuXGoef1Q2t_nvk8ngfAYZLk0otlwLXwIh7qQvBc-zEPVSRzRX6FWtpiE8lgkI5GYtiCX00sDLlVNjLRCmo9VmQjP_aJKaAgDZLjwrlFDM_6Hyf3nCpI0UtrU06jhsilmf3E61t1enGGe33k-_3e9Zdz7ioMcIXQm3IVpkoImeow93KDzN4zRtG1zZdprgIdeXGEkyrkRMUJIjtChqDzUHn4MRaxCXDcV7CUBHjpacPS595geDXXA6gMa_KNki5Mo5EL2bGBe5QGhVw-BaenMMHjP9Xiguv-9TxrtV5_7X9er3V447g2-1Qfjg1omXIT1po6FsyJtU1Y_TbPXVu9BdOzWTVQGbNJHUWBK8PGBSvJipxbh0VW3c6InzNcEbI1MDJnM-WKn1qwUw9N5Byn6LI6dnXWZbLU2K6absH3F_n1bWiX49LsAItxWyjzWSJjEwbSFzLxTZQIVDUFZUDcBa_BQqZcpnYqGHKXzXNMW_xkiJ_M4ifDPh_mfSZ1npJnW3ca0GROZlXZAjG70G1gt_j879HePT_aAbxG5GVfLwaXe7Dik73Cer13oD19eDTvYVk9TW-qh313gBj8eGkM_gZCllfu |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+processing+of+neighboring+skyline+queries+with+consideration+of+distance%2C+quality%2C+and+cost&rft.jtitle=Computing&rft.au=Huang%2C+Yuan-Ko&rft.date=2020-02-01&rft.pub=Springer+Vienna&rft.issn=0010-485X&rft.eissn=1436-5057&rft.volume=102&rft.issue=2&rft.spage=523&rft.epage=550&rft_id=info:doi/10.1007%2Fs00607-019-00769-6&rft.externalDocID=10_1007_s00607_019_00769_6 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-485X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-485X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-485X&client=summon |