An automatic hyperparameter optimization DNN model for precipitation prediction
Deep neural networks (DNN) have gained remarkable success on many rainfall predictions tasks in recent years. However, the performance of DNN highly relies upon the hyperparameter setting. In order to design DNNs with the best performance, extensive expertise in both the DNN and the problem domain u...
Uložené v:
| Vydané v: | Applied intelligence (Dordrecht, Netherlands) Ročník 52; číslo 3; s. 2703 - 2719 |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
Springer US
01.02.2022
Springer Nature B.V |
| Predmet: | |
| ISSN: | 0924-669X, 1573-7497 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Deep neural networks (DNN) have gained remarkable success on many rainfall predictions tasks in recent years. However, the performance of DNN highly relies upon the hyperparameter setting. In order to design DNNs with the best performance, extensive expertise in both the DNN and the problem domain under investigation is required. But many DNN users have not met this requirement. Therefore, it is difficult for the users who have no extensive expertise in DNN to design optimal DNN architectures for their rainfall prediction problems that is to solve. In this paper, we proposed a novel automatic hyperparameters optimization method for DNN by using an improved Gene Expression Programming. The proposed method can automatically optimize the hyperparameters of DNN for precipitation modeling and prediction. Extensive experiments are conducted with three real precipitation datasets to verify the performance of the proposed algorithm in terms of four metrics, including MAE, MSE, RMSE, and R-Squared. The results show that: 1) the DNN optimized by the proposed method outperforms the existing precipitation prediction methods including Multiple Linear Regression (MLR), Back Propagation (BP), Support Vector Machine (SVM), Random Forest (RF) and DNN; 2) the proposed DNN hyperparameter optimization method outperforms state-of-the-art DNN hyperparameter optimization methods, including Genetic Algorithm, Bayes Search, Grid Search, Randomized Search, and Quasi Random Search. |
|---|---|
| AbstractList | Deep neural networks (DNN) have gained remarkable success on many rainfall predictions tasks in recent years. However, the performance of DNN highly relies upon the hyperparameter setting. In order to design DNNs with the best performance, extensive expertise in both the DNN and the problem domain under investigation is required. But many DNN users have not met this requirement. Therefore, it is difficult for the users who have no extensive expertise in DNN to design optimal DNN architectures for their rainfall prediction problems that is to solve. In this paper, we proposed a novel automatic hyperparameters optimization method for DNN by using an improved Gene Expression Programming. The proposed method can automatically optimize the hyperparameters of DNN for precipitation modeling and prediction. Extensive experiments are conducted with three real precipitation datasets to verify the performance of the proposed algorithm in terms of four metrics, including MAE, MSE, RMSE, and R-Squared. The results show that: 1) the DNN optimized by the proposed method outperforms the existing precipitation prediction methods including Multiple Linear Regression (MLR), Back Propagation (BP), Support Vector Machine (SVM), Random Forest (RF) and DNN; 2) the proposed DNN hyperparameter optimization method outperforms state-of-the-art DNN hyperparameter optimization methods, including Genetic Algorithm, Bayes Search, Grid Search, Randomized Search, and Quasi Random Search. |
| Author | Peng, Yuzhong Gong, Daoqing Zhang, Hao Cai, Hongguo Deng, Chuyan Li, Hongya |
| Author_xml | – sequence: 1 givenname: Yuzhong surname: Peng fullname: Peng, Yuzhong email: jedison@163.com organization: School of Computer & Information Engineering, Nanning Normal University, College of Computer Science & Technology, Fudan University – sequence: 2 givenname: Daoqing orcidid: 0000-0002-0977-5211 surname: Gong fullname: Gong, Daoqing organization: School of Computer & Information Engineering, Nanning Normal University – sequence: 3 givenname: Chuyan surname: Deng fullname: Deng, Chuyan organization: School of Computer & Information Engineering, Nanning Normal University – sequence: 4 givenname: Hongya surname: Li fullname: Li, Hongya organization: Department of Science, Shangqiu University Applied Science and Technology College – sequence: 5 givenname: Hongguo surname: Cai fullname: Cai, Hongguo organization: Department of Mathematics and Computer Science, The Guangxi College of Education – sequence: 6 givenname: Hao surname: Zhang fullname: Zhang, Hao email: haoz15@fudan.edu.cn organization: College of Computer Science & Technology, Fudan University |
| BookMark | eNp9kE1PwzAMhiM0JLbBH-BUiXPBadqkOU7jU5q2C0jcojRNIdPalCQ7lF9PRichcdjBsi2_j229MzTpbKcRusZwiwHYnceQlzyFDMcogKXDGZrigpGU5ZxN0BR4lqeU8vcLNPN-CwCEAJ6izaJL5D7YVgajks-h166XTrY6aJfYPpjWfMeR7ZL79Tppba13SWNd0jutTG_COItdbdShvETnjdx5fXXMc_T2-PC6fE5Xm6eX5WKVKoJ5SKualpWusGI1I42UTENJKCWSgAZdEqk4ZRXP6qJuNJWEcIrzEkgmMYG6UGSObsa9vbNfe-2D2Nq96-JJkdGMAeRFXkRVOaqUs9473Qh1fDk4aXYCgzjYJ0b7RLRP_Nonhohm_9DemVa64TRERshHcfeh3d9XJ6gfPO6GWg |
| CitedBy_id | crossref_primary_10_5194_nhess_22_3435_2022 crossref_primary_10_1007_s11227_023_05728_9 crossref_primary_10_1016_j_jwpe_2024_104789 crossref_primary_10_3390_su16177489 crossref_primary_10_3390_ma16020583 crossref_primary_10_1016_j_jobe_2024_110726 crossref_primary_10_1016_j_rse_2023_113819 crossref_primary_10_1007_s11269_025_04319_y crossref_primary_10_1016_j_memsci_2023_122320 crossref_primary_10_1088_1748_9326_ad661f crossref_primary_10_1002_joc_70064 crossref_primary_10_1007_s10489_023_05057_7 crossref_primary_10_1007_s10489_024_05526_7 crossref_primary_10_3390_rs17111839 crossref_primary_10_1007_s11831_023_10017_y crossref_primary_10_3390_s22166206 |
| Cites_doi | 10.1109/TNNLS.2019.2919608 10.1002/joc.3809 10.1109/TEVC.2019.2916183 10.1007/s00521-012-1137-5 10.1109/TEVC.2015.2424410 10.1007/s11069-018-3286-z 10.1007/s10462-019-09719-2 10.1002/met.1717 10.1007/s00521-016-2537-8 10.1109/MCI.2018.2840738 10.1016/j.proeng.2016.07.442 10.1016/j.eswa.2017.05.029 10.1007/s00521-016-2618-8 10.1146/annurev-bioeng-071516-044442 10.1016/j.atmosres.2015.09.021 10.1038/nature14236 10.1016/j.cageo.2017.06.011 10.1109/CVPR.2015.7298935 10.1145/3071178.3071229 10.1109/ICCV.2017.154 10.1109/ICSPCS.2018.8631773 10.1007/978-3-030-26969-2_8 10.1007/978-981-13-1544-2_37 10.1109/INVENTIVE.2016.7823234 10.1109/TCYB.2020.2983860 10.1609/aaai.v29i1.9354 10.1145/2783258.2783275 10.1007/978-3-030-05318-5_3 10.1007/978-3-030-29894-4_52 10.1145/3219819.3219837 10.1109/CVPR.2018.00061 10.1142/9789814730464_0010 10.1007/978-3-319-46487-9_40 10.1145/3292500.3330701 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021. |
| DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8FD 8FE 8FG 8FK 8FL ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- L6V L7M L~C L~D M0C M0N M7S P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ PTHSS Q9U |
| DOI | 10.1007/s10489-021-02507-y |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Global (Alumni Edition) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Health Research Premium Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One Community College ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Databases ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology Engineering Collection ProQuest Central Basic |
| DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) ProQuest One Psychology Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ABI/INFORM Complete ProQuest One Applied & Life Sciences ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest Business Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central ABI/INFORM Professional Advanced ProQuest Engineering Collection ProQuest Central Korea Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | ProQuest Business Collection (Alumni Edition) |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1573-7497 |
| EndPage | 2719 |
| ExternalDocumentID | 10_1007_s10489_021_02507_y |
| GrantInformation_xml | – fundername: Natural Science Foundation of Guangxi Zhuang Autonomous Region grantid: #2017GXNSFAA198228 and #2017GXNSFBA198153 funderid: http://dx.doi.org/10.13039/100012547 – fundername: National Natural Science Foundation of China grantid: #61562008 and #41665006 funderid: http://dx.doi.org/10.13039/501100001809 |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 23M 28- 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 77K 7WY 8FE 8FG 8FL 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABIVO ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW L6V LAK LLZTM M0C M0N M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PSYQQ PT4 PT5 PTHSS Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7X Z7Z Z81 Z83 Z88 Z8M Z8N Z8R Z8T Z8U Z8W Z92 ZMTXR ZY4 ~A9 ~EX 77I AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 7SC 7XB 8AL 8FD 8FK JQ2 L.- L7M L~C L~D PKEHL PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c319t-bd68beb1c7d73faa7e083663a30e0e83ac967b92d5dfe6a3396148032a130d5c3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 23 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000664574700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0924-669X |
| IngestDate | Tue Nov 18 12:52:47 EST 2025 Tue Nov 18 22:43:19 EST 2025 Sat Nov 29 05:33:24 EST 2025 Fri Feb 21 02:47:41 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Neural structure optimization Hyperparameter optimization Deep neural networks Neural architecture search Precipitation prediction Gene expression programming |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-bd68beb1c7d73faa7e083663a30e0e83ac967b92d5dfe6a3396148032a130d5c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-0977-5211 |
| PQID | 2627004545 |
| PQPubID | 326365 |
| PageCount | 17 |
| ParticipantIDs | proquest_journals_2627004545 crossref_citationtrail_10_1007_s10489_021_02507_y crossref_primary_10_1007_s10489_021_02507_y springer_journals_10_1007_s10489_021_02507_y |
| PublicationCentury | 2000 |
| PublicationDate | 20220200 2022-02-00 20220201 |
| PublicationDateYYYYMMDD | 2022-02-01 |
| PublicationDate_xml | – month: 2 year: 2022 text: 20220200 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Boston |
| PublicationSubtitle | The International Journal of Research on Intelligent Systems for Real Life Complex Problems |
| PublicationTitle | Applied intelligence (Dordrecht, Netherlands) |
| PublicationTitleAbbrev | Appl Intell |
| PublicationYear | 2022 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Cramer, Kampouridis, Freitas, Alexandridis (CR17) 2017; 85 Jia, Guan, Liu, Yang (CR6) 2020; 2020 Shen, Wu, Suk (CR13) 2017; 19 Sun, Xue, Zhang, Yen (CR24) 2020; 24 CR19 Meyer, Kühnlein, Appelhans, Nauss (CR5) 2016; 169 CR18 CR39 CR16 Zhong, Ong, Cai (CR32) 2016; 20 CR38 CR15 CR12 CR11 Liu, Racah, Correa, Khosrowshahi, Lavers, Kunkel, Collins (CR14) 2016; 1605 Young, Hazarika, Poria, Cambria (CR9) 2018; 13 Sun, Xue, Zhang, Yen (CR25) 2020; 31 Komer, Bergstra, Eliasmith (CR45) 2019 Dufek, Augusto, Dias, Barbosa (CR8) 2017; 106 He, Guan, Zhang, Simmons (CR1) 2014; 34 Srivastava, Hinton, Krizhevsky (CR43) 2014; 15 CR2 CR3 Faradonbeh, Armaghani, Amnieh, Mohamad (CR34) 2018; 29 Darwish, Hassanien, Das (CR23) 2020; 53 CR29 Nazari (CR36) 2019; 31 CR28 Zhong, Feng, Cai (CR35) 2019; 25 Kim, Seo, Lee (CR7) 2016; 154 CR27 CR26 Yang, Yu, Lin, Kuo, Tseng (CR4) 2018; 25 CR22 CR44 CR21 Hoang, Tien Bui (CR30) 2018; 92 CR20 CR42 CR41 CR40 Peng, Changan, Jian (CR31) 2010; 27 Mnih, Kavukcuoglu, Silver, Rusu, Veness, Bellemare, Petersen (CR10) 2015; 518 Armaghani, Faradonbeh, Rezaei, Rashid, Amnieh (CR33) 2018; 29 Ferreira (CR37) 2001; 13 V Mnih (2507_CR10) 2015; 518 J Zhong (2507_CR32) 2016; 20 H Meyer (2507_CR5) 2016; 169 A Darwish (2507_CR23) 2020; 53 YN Sun (2507_CR24) 2020; 24 S Cramer (2507_CR17) 2017; 85 C Ferreira (2507_CR37) 2001; 13 T Young (2507_CR9) 2018; 13 2507_CR26 2507_CR27 2507_CR28 2507_CR29 2507_CR22 2507_CR44 N Srivastava (2507_CR43) 2014; 15 AS Dufek (2507_CR8) 2017; 106 D Shen (2507_CR13) 2017; 19 2507_CR40 RS Faradonbeh (2507_CR34) 2018; 29 2507_CR41 2507_CR20 YN Sun (2507_CR25) 2020; 31 2507_CR42 2507_CR21 DJ Armaghani (2507_CR33) 2018; 29 S Kim (2507_CR7) 2016; 154 Z Jia (2507_CR6) 2020; 2020 Y Liu (2507_CR14) 2016; 1605 J Zhong (2507_CR35) 2019; 25 Y Peng (2507_CR31) 2010; 27 2507_CR2 2507_CR3 2507_CR19 2507_CR15 N Hoang (2507_CR30) 2018; 92 2507_CR16 2507_CR38 A Nazari (2507_CR36) 2019; 31 2507_CR39 B Komer (2507_CR45) 2019 2507_CR18 2507_CR11 2507_CR12 X He (2507_CR1) 2014; 34 TC Yang (2507_CR4) 2018; 25 |
| References_xml | – ident: CR22 – ident: CR18 – volume: 31 start-page: 1242 issue: 4 year: 2020 end-page: 1254 ident: CR25 article-title: Completely automated CNN architecture design based on blocks publication-title: IEEE transactions on neural networks and learning systems doi: 10.1109/TNNLS.2019.2919608 – volume: 34 start-page: 1898 issue: 6 year: 2014 end-page: 1912 ident: CR1 article-title: A wavelet-based multiple linear regression model for forecasting monthly rainfall publication-title: Int J Climatol doi: 10.1002/joc.3809 – ident: CR39 – ident: CR2 – ident: CR16 – volume: 24 start-page: 394 issue: 2 year: 2020 end-page: 407 ident: CR24 article-title: Evolving deep convolutional neural networks for image classification publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2019.2916183 – ident: CR12 – volume: 25 start-page: 1 issue: 7 year: 2019 end-page: 14 ident: CR35 article-title: Multifactorial genetic programming for symbolic regression problems publication-title: IEEE Transactions on Systems, Man, and Cybernetics – volume: 31 start-page: 767 issue: 2 year: 2019 end-page: 776 ident: CR36 article-title: Application of gene expression programming to predict the compressive damage of lightweight aluminosilicate geopolymer publication-title: Neural Comput & Applic doi: 10.1007/s00521-012-1137-5 – ident: CR29 – volume: 20 start-page: 65 issue: 1 year: 2016 end-page: 80 ident: CR32 article-title: Self-learning gene expression programming publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2015.2424410 – ident: CR40 – ident: CR27 – ident: CR42 – volume: 92 start-page: 1871 issue: 3 year: 2018 end-page: 1887 ident: CR30 article-title: Spatial prediction of rainfall-induced shallow landslides using gene expression programming integrated with GIS: a case study in Vietnam publication-title: Nat Hazards doi: 10.1007/s11069-018-3286-z – ident: CR21 – volume: 53 start-page: 1767 issue: 3 year: 2020 end-page: 1812 ident: CR23 article-title: A survey of swarm and evolutionary computing approaches for deep learning publication-title: Artif Intell Rev doi: 10.1007/s10462-019-09719-2 – volume: 25 start-page: 510 issue: 4 year: 2018 end-page: 522 ident: CR4 article-title: Predictor selection method for the construction of support vector machine (SVM)-based typhoon rainfall forecasting models using a non-dominated sorting genetic algorithm publication-title: Meteorol Appl doi: 10.1002/met.1717 – ident: CR19 – volume: 29 start-page: 269 issue: 6 year: 2018 end-page: 281 ident: CR34 article-title: Prediction and minimization of blast-induced flyrock using gene expression programming and firefly algorithm publication-title: Neural Comput & Applic doi: 10.1007/s00521-016-2537-8 – ident: CR44 – ident: CR3 – ident: CR15 – ident: CR38 – volume: 27 start-page: 1585 issue: 1 year: 2010 end-page: 1589 ident: CR31 article-title: Multicellular gene expression programming algorithm for function optimization publication-title: Control Theory & Applications – volume: 13 start-page: 55 issue: 3 year: 2018 end-page: 75 ident: CR9 article-title: Recent trends in deep learning based natural language processing. ieee publication-title: Computational intelligenCe magazine doi: 10.1109/MCI.2018.2840738 – volume: 154 start-page: 1231 year: 2016 end-page: 1236 ident: CR7 article-title: Modeling of rainfall by combining neural computation and wavelet technique publication-title: Procedia Eng doi: 10.1016/j.proeng.2016.07.442 – volume: 85 start-page: 169 issue: 18 year: 2017 end-page: 181 ident: CR17 article-title: An extensive evaluation of seven machine learning methods for rainfall prediction in weather derivatives publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2017.05.029 – volume: 29 start-page: 1115 issue: 11 year: 2018 end-page: 1125 ident: CR33 article-title: Settlement prediction of the rock-socketed piles through a new technique based on gene expression programming publication-title: Neural Comput & Applic doi: 10.1007/s00521-016-2618-8 – volume: 13 start-page: 87 issue: 2 year: 2001 end-page: 129 ident: CR37 article-title: Gene expression programming: a new adaptive algorithm for solving problems publication-title: Complex Systems – ident: CR11 – volume: 19 start-page: 221 issue: 1 year: 2017 end-page: 248 ident: CR13 article-title: Deep learning in medical image analysis publication-title: Annu Rev Biomed Eng doi: 10.1146/annurev-bioeng-071516-044442 – start-page: 97 year: 2019 end-page: 111 ident: CR45 publication-title: Hyperopt-Sklearn – volume: 169 start-page: 424 year: 2016 end-page: 433 ident: CR5 article-title: Comparison of four machine learning algorithms for their applicability in satellite-based optical rainfall retrievals publication-title: Atmos Res doi: 10.1016/j.atmosres.2015.09.021 – ident: CR28 – ident: CR41 – volume: 15 start-page: 1929 issue: 1 year: 2014 end-page: 1958 ident: CR43 article-title: Dropout: a simple way to prevent neural networks from overfitting publication-title: J Mach Learn Res – volume: 1605 year: 2016 ident: CR14 article-title: Application of deep convolutional neural networks for detecting extreme weather in climate datasets publication-title: Computer Vision and Pattern Recognition arXiv – ident: CR26 – volume: 2020 start-page: 1 issue: 2 year: 2020 end-page: 15 ident: CR6 article-title: Influence of short-term rainfall forecast error on flood forecast operation: a risk assessment based on Bayesian theory publication-title: Hum Ecol Risk Assess – volume: 518 start-page: 529 issue: 7540 year: 2015 end-page: 533 ident: CR10 article-title: Human-level control through deep reinforcement learning publication-title: Nature doi: 10.1038/nature14236 – ident: CR20 – volume: 106 start-page: 139 year: 2017 end-page: 149 ident: CR8 article-title: Application of evolutionary computation on ensemble forecast of quantitative precipitation publication-title: Comput Geosci doi: 10.1016/j.cageo.2017.06.011 – ident: 2507_CR12 doi: 10.1109/CVPR.2015.7298935 – volume: 85 start-page: 169 issue: 18 year: 2017 ident: 2507_CR17 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2017.05.029 – ident: 2507_CR26 doi: 10.1145/3071178.3071229 – volume: 92 start-page: 1871 issue: 3 year: 2018 ident: 2507_CR30 publication-title: Nat Hazards doi: 10.1007/s11069-018-3286-z – volume: 13 start-page: 87 issue: 2 year: 2001 ident: 2507_CR37 publication-title: Complex Systems – volume: 31 start-page: 1242 issue: 4 year: 2020 ident: 2507_CR25 publication-title: IEEE transactions on neural networks and learning systems doi: 10.1109/TNNLS.2019.2919608 – ident: 2507_CR28 doi: 10.1109/ICCV.2017.154 – ident: 2507_CR44 doi: 10.1109/ICSPCS.2018.8631773 – volume: 19 start-page: 221 issue: 1 year: 2017 ident: 2507_CR13 publication-title: Annu Rev Biomed Eng doi: 10.1146/annurev-bioeng-071516-044442 – ident: 2507_CR39 doi: 10.1007/978-3-030-26969-2_8 – ident: 2507_CR16 doi: 10.1007/978-981-13-1544-2_37 – ident: 2507_CR21 – ident: 2507_CR40 – volume: 13 start-page: 55 issue: 3 year: 2018 ident: 2507_CR9 publication-title: Computational intelligenCe magazine doi: 10.1109/MCI.2018.2840738 – ident: 2507_CR42 – volume: 2020 start-page: 1 issue: 2 year: 2020 ident: 2507_CR6 publication-title: Hum Ecol Risk Assess – volume: 53 start-page: 1767 issue: 3 year: 2020 ident: 2507_CR23 publication-title: Artif Intell Rev doi: 10.1007/s10462-019-09719-2 – volume: 24 start-page: 394 issue: 2 year: 2020 ident: 2507_CR24 publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2019.2916183 – volume: 31 start-page: 767 issue: 2 year: 2019 ident: 2507_CR36 publication-title: Neural Comput & Applic doi: 10.1007/s00521-012-1137-5 – volume: 15 start-page: 1929 issue: 1 year: 2014 ident: 2507_CR43 publication-title: J Mach Learn Res – ident: 2507_CR2 doi: 10.1109/INVENTIVE.2016.7823234 – ident: 2507_CR29 doi: 10.1109/TCYB.2020.2983860 – volume: 29 start-page: 1115 issue: 11 year: 2018 ident: 2507_CR33 publication-title: Neural Comput & Applic doi: 10.1007/s00521-016-2618-8 – start-page: 97 volume-title: Hyperopt-Sklearn year: 2019 ident: 2507_CR45 – ident: 2507_CR38 – ident: 2507_CR19 doi: 10.1609/aaai.v29i1.9354 – ident: 2507_CR15 doi: 10.1145/2783258.2783275 – ident: 2507_CR22 doi: 10.1007/978-3-030-05318-5_3 – volume: 20 start-page: 65 issue: 1 year: 2016 ident: 2507_CR32 publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2015.2424410 – volume: 1605 year: 2016 ident: 2507_CR14 publication-title: Computer Vision and Pattern Recognition arXiv – ident: 2507_CR27 doi: 10.1007/978-3-030-29894-4_52 – ident: 2507_CR20 doi: 10.1145/3219819.3219837 – volume: 169 start-page: 424 year: 2016 ident: 2507_CR5 publication-title: Atmos Res doi: 10.1016/j.atmosres.2015.09.021 – volume: 25 start-page: 1 issue: 7 year: 2019 ident: 2507_CR35 publication-title: IEEE Transactions on Systems, Man, and Cybernetics – ident: 2507_CR41 doi: 10.1109/CVPR.2018.00061 – ident: 2507_CR3 doi: 10.1142/9789814730464_0010 – volume: 29 start-page: 269 issue: 6 year: 2018 ident: 2507_CR34 publication-title: Neural Comput & Applic doi: 10.1007/s00521-016-2537-8 – volume: 518 start-page: 529 issue: 7540 year: 2015 ident: 2507_CR10 publication-title: Nature doi: 10.1038/nature14236 – ident: 2507_CR11 doi: 10.1007/978-3-319-46487-9_40 – volume: 106 start-page: 139 year: 2017 ident: 2507_CR8 publication-title: Comput Geosci doi: 10.1016/j.cageo.2017.06.011 – volume: 154 start-page: 1231 year: 2016 ident: 2507_CR7 publication-title: Procedia Eng doi: 10.1016/j.proeng.2016.07.442 – volume: 34 start-page: 1898 issue: 6 year: 2014 ident: 2507_CR1 publication-title: Int J Climatol doi: 10.1002/joc.3809 – volume: 25 start-page: 510 issue: 4 year: 2018 ident: 2507_CR4 publication-title: Meteorol Appl doi: 10.1002/met.1717 – ident: 2507_CR18 doi: 10.1145/3292500.3330701 – volume: 27 start-page: 1585 issue: 1 year: 2010 ident: 2507_CR31 publication-title: Control Theory & Applications |
| SSID | ssj0003301 |
| Score | 2.4000823 |
| Snippet | Deep neural networks (DNN) have gained remarkable success on many rainfall predictions tasks in recent years. However, the performance of DNN highly relies... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 2703 |
| SubjectTerms | Artificial Intelligence Artificial neural networks Back propagation Back propagation networks Computer Science Gene expression Genetic algorithms Machines Manufacturing Mechanical Engineering Optimization Precipitation Processes Rainfall Searching Support vector machines |
| SummonAdditionalLinks | – databaseName: Engineering Database dbid: M7S link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagMLBQnqJQkAc2sGjjxE4mVAEVAwpIgNQt8isCiTalTZH67zm7TiOQ6MIYJXGsnH33ne_uO4TOWagjZmzYXaqIhJJ3CaB8SsIgBzABFiM2rlD4gadpPBgkT_7AberTKiud6BS1LpQ9I78KmA2RhmDwr8efxHaNstFV30JjHW1YloSuS917Xmpi8NVdxzz4OmEsGfiiGV86F9pkoQCcaUABnMx_GqYabf4KkDq702_-d8Y7aNsjTtxbLJFdtGZGe6hZdXPAfnPvo8feCItZWTgOV_wG_unE8oIPbb4MLkCzDH3JJr5NU-w66GBAvHhs-THGnurbXul3VytxgF77dy8398S3WyAK9mFJpGaxBNWtuOY0F4Iby1zNqKAd0zExFSphXCaBjnRumKA0sSSiHRoIsIM6UvQQNUbFyBwhLCWXkgkVqUACHhPShFxybZQJcwEuUwt1q3-dKT9B2xLjI6tZlK18MpBP5uSTzVvoYvnOeMHEsfLpdiWUzO_KaVZLpIUuK7HWt_8e7Xj1aCdoK7BVES6Zu40a5WRmTtGm-irfp5Mztya_AYbD5_o priority: 102 providerName: ProQuest |
| Title | An automatic hyperparameter optimization DNN model for precipitation prediction |
| URI | https://link.springer.com/article/10.1007/s10489-021-02507-y https://www.proquest.com/docview/2627004545 |
| Volume | 52 |
| WOSCitedRecordID | wos000664574700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLink customDbUrl: eissn: 1573-7497 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003301 issn: 0924-669X databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB60evBifWJ9lBy8aaBudpPdo1ZFUNfS-qheliSboqBtaavQf-8kZq2KCnoJhE2yYZLMg5n5BmCbh3nEjXW7Kx3RUIk9ilo-o2HQQWUCJUZsXKLwmUjTuN1OGj4pbFhEuxcuScepPyS7hTa8J0DzF-W2oONpmEFxF9uCDc3W9Tv_RQvd1cnDf1LOk7ZPlfl-jc_iaKJjfnGLOmlzXP7fPhdg3muXZP_tOizClOkuQbmo3ED8Q16Gi_0ukc-jnsNrJfdoiw4sBviTjY0hPeQiTz49kxymKXHVcghqt6RvsTD6Htbb9vIHlxexAlfHR5f1E-pLK1CNb25EVc5jhWxai1ywjpTCWJRqziSrmZqJmdQJFyoJ8ijvGC4ZSyxgaI0FEmVeHmm2CqVur2vWgCgllOJSRzpQqHtJZUKhRG60CTsSzaMK7BUUzrTfoC1_8ZhNEJMtxTKkWOYolo0rsPM-p_-GuvHr6M3i4DL_AodZwK1LPUQFsQK7xUFNPv-82vrfhm_AXGAzIlwg9yaURoNnswWz-mX0MBxUYVrc3FZh5uAobTSxdyootue1um1FC9tGdFd19_cVIErlHA |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NT9tAEB1RWqlcoF-IUEr30J7aVcOuvWsfEEIFBErq9kCl3Nz9ikCCJCQBlD_Fb-zMZk3USuXGoUfL9sr2vn0z4515A_BBZT5Xgbbdrct5ZvUORy9f8kz00ZlAi1GEWCjc1VVV9HrljyW4a2phKK2y4cRI1H7o6B_5F6FoizRDg783uuLUNYp2V5sWGnNYdMLsFkO2ye7JAc7vRyGODk-_HvPUVYA7hNuUW68KiwzltNeyb4wOJNCspJHt0A6FNK5U2pbC574flJGyJK3MthQG6d7nTuK4T-BpJgtN66qj-T3zSxnbLbfxbblSZS8V6aRSvYySkwQG7-h1aD770xAuvNu_NmSjnTta-9--0AtYTR41258vgZewFAavYK3pVsESeb2G7_sDZq6nw6hRy84w_h6T7vkl5QOxITLnZSpJZQdVxWKHIIYePRuR_scoSZnTkT-PtSBv4OejvNY6LA-Gg7ABzFptrTIud8Kiv2lsyLTVPriQ9Q2GhC3Yaea2dukBqeXHRb1QiSY81IiHOuKhnrXg0_09o7nSyINXbzUgqBPrTOoFAlrwuYHR4vS_R9t8eLT38Pz49Fu37p5UnbewIqgCJCaub8HydHwd3sEzdzM9n4y343pg8Oux4fUbLvhE1g |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LTxsxEB5RqKpeCn2gpkDrQzm1FsHetbMHhBBpVARacmilqJetXyuQIEmT0Cp_rb-OGcdL1ErlxqHH1e5a6_XneXhmvgF4rzKfq0Bhd-tynlm9z9HKlzwTNRoTqDE6IRYKn-my7AwGRX8Ffje1MJRW2cjEKKj9yNEZ-Z5QFCLNUOHv1Sktot_tHY5_cOogRZHWpp3GAiKnYf4L3bfpwUkX13pXiN6nL8efeeowwB1Cb8atVx2L0sppr2VtjA5E1qykke3QDh1pXKG0LYTPfR2UkbIg3sy2FAZFv8-dxHEfwZpGH5PSCfv5tzstIGVsvdzGmXOlikEq2EllexklKgl05NEC0Xz-p1JcWrp_BWejzuut_89_awOeJUubHS22xnNYCcMXsN50sWBJqL2E86MhMzezUeSuZRfol0-ID_2a8oTYCCXqdSpVZd2yZLFzEENLn42JF2ScKM7pyl_GGpFX8PVBprUJq8PRMLwGZq22VhmXO2HRDjU2ZNpqH1zIaoOuYgv2m3WuXPpAagVyVS3ZowkbFWKjitio5i34cPfOeMFAcu_T2w0gqiSNptUSDS342EBqefvfo725f7R38ARRVZ2dlKdb8FRQYUjMZ9-G1dnkJuzAY_dzdjmdvI1bg8H3h0bXLbUVTfo |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+automatic+hyperparameter+optimization+DNN+model+for+precipitation+prediction&rft.jtitle=Applied+intelligence+%28Dordrecht%2C+Netherlands%29&rft.au=Peng%2C+Yuzhong&rft.au=Gong%2C+Daoqing&rft.au=Deng%2C+Chuyan&rft.au=Li%2C+Hongya&rft.date=2022-02-01&rft.issn=0924-669X&rft.eissn=1573-7497&rft.volume=52&rft.issue=3&rft.spage=2703&rft.epage=2719&rft_id=info:doi/10.1007%2Fs10489-021-02507-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10489_021_02507_y |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-669X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-669X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-669X&client=summon |