An automatic hyperparameter optimization DNN model for precipitation prediction

Deep neural networks (DNN) have gained remarkable success on many rainfall predictions tasks in recent years. However, the performance of DNN highly relies upon the hyperparameter setting. In order to design DNNs with the best performance, extensive expertise in both the DNN and the problem domain u...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Applied intelligence (Dordrecht, Netherlands) Ročník 52; číslo 3; s. 2703 - 2719
Hlavní autori: Peng, Yuzhong, Gong, Daoqing, Deng, Chuyan, Li, Hongya, Cai, Hongguo, Zhang, Hao
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 01.02.2022
Springer Nature B.V
Predmet:
ISSN:0924-669X, 1573-7497
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Deep neural networks (DNN) have gained remarkable success on many rainfall predictions tasks in recent years. However, the performance of DNN highly relies upon the hyperparameter setting. In order to design DNNs with the best performance, extensive expertise in both the DNN and the problem domain under investigation is required. But many DNN users have not met this requirement. Therefore, it is difficult for the users who have no extensive expertise in DNN to design optimal DNN architectures for their rainfall prediction problems that is to solve. In this paper, we proposed a novel automatic hyperparameters optimization method for DNN by using an improved Gene Expression Programming. The proposed method can automatically optimize the hyperparameters of DNN for precipitation modeling and prediction. Extensive experiments are conducted with three real precipitation datasets to verify the performance of the proposed algorithm in terms of four metrics, including MAE, MSE, RMSE, and R-Squared. The results show that: 1) the DNN optimized by the proposed method outperforms the existing precipitation prediction methods including Multiple Linear Regression (MLR), Back Propagation (BP), Support Vector Machine (SVM), Random Forest (RF) and DNN; 2) the proposed DNN hyperparameter optimization method outperforms state-of-the-art DNN hyperparameter optimization methods, including Genetic Algorithm, Bayes Search, Grid Search, Randomized Search, and Quasi Random Search.
AbstractList Deep neural networks (DNN) have gained remarkable success on many rainfall predictions tasks in recent years. However, the performance of DNN highly relies upon the hyperparameter setting. In order to design DNNs with the best performance, extensive expertise in both the DNN and the problem domain under investigation is required. But many DNN users have not met this requirement. Therefore, it is difficult for the users who have no extensive expertise in DNN to design optimal DNN architectures for their rainfall prediction problems that is to solve. In this paper, we proposed a novel automatic hyperparameters optimization method for DNN by using an improved Gene Expression Programming. The proposed method can automatically optimize the hyperparameters of DNN for precipitation modeling and prediction. Extensive experiments are conducted with three real precipitation datasets to verify the performance of the proposed algorithm in terms of four metrics, including MAE, MSE, RMSE, and R-Squared. The results show that: 1) the DNN optimized by the proposed method outperforms the existing precipitation prediction methods including Multiple Linear Regression (MLR), Back Propagation (BP), Support Vector Machine (SVM), Random Forest (RF) and DNN; 2) the proposed DNN hyperparameter optimization method outperforms state-of-the-art DNN hyperparameter optimization methods, including Genetic Algorithm, Bayes Search, Grid Search, Randomized Search, and Quasi Random Search.
Author Peng, Yuzhong
Gong, Daoqing
Zhang, Hao
Cai, Hongguo
Deng, Chuyan
Li, Hongya
Author_xml – sequence: 1
  givenname: Yuzhong
  surname: Peng
  fullname: Peng, Yuzhong
  email: jedison@163.com
  organization: School of Computer & Information Engineering, Nanning Normal University, College of Computer Science & Technology, Fudan University
– sequence: 2
  givenname: Daoqing
  orcidid: 0000-0002-0977-5211
  surname: Gong
  fullname: Gong, Daoqing
  organization: School of Computer & Information Engineering, Nanning Normal University
– sequence: 3
  givenname: Chuyan
  surname: Deng
  fullname: Deng, Chuyan
  organization: School of Computer & Information Engineering, Nanning Normal University
– sequence: 4
  givenname: Hongya
  surname: Li
  fullname: Li, Hongya
  organization: Department of Science, Shangqiu University Applied Science and Technology College
– sequence: 5
  givenname: Hongguo
  surname: Cai
  fullname: Cai, Hongguo
  organization: Department of Mathematics and Computer Science, The Guangxi College of Education
– sequence: 6
  givenname: Hao
  surname: Zhang
  fullname: Zhang, Hao
  email: haoz15@fudan.edu.cn
  organization: College of Computer Science & Technology, Fudan University
BookMark eNp9kE1PwzAMhiM0JLbBH-BUiXPBadqkOU7jU5q2C0jcojRNIdPalCQ7lF9PRichcdjBsi2_j229MzTpbKcRusZwiwHYnceQlzyFDMcogKXDGZrigpGU5ZxN0BR4lqeU8vcLNPN-CwCEAJ6izaJL5D7YVgajks-h166XTrY6aJfYPpjWfMeR7ZL79Tppba13SWNd0jutTG_COItdbdShvETnjdx5fXXMc_T2-PC6fE5Xm6eX5WKVKoJ5SKualpWusGI1I42UTENJKCWSgAZdEqk4ZRXP6qJuNJWEcIrzEkgmMYG6UGSObsa9vbNfe-2D2Nq96-JJkdGMAeRFXkRVOaqUs9473Qh1fDk4aXYCgzjYJ0b7RLRP_Nonhohm_9DemVa64TRERshHcfeh3d9XJ6gfPO6GWg
CitedBy_id crossref_primary_10_5194_nhess_22_3435_2022
crossref_primary_10_1007_s11227_023_05728_9
crossref_primary_10_1016_j_jwpe_2024_104789
crossref_primary_10_3390_su16177489
crossref_primary_10_3390_ma16020583
crossref_primary_10_1016_j_jobe_2024_110726
crossref_primary_10_1016_j_rse_2023_113819
crossref_primary_10_1007_s11269_025_04319_y
crossref_primary_10_1016_j_memsci_2023_122320
crossref_primary_10_1088_1748_9326_ad661f
crossref_primary_10_1002_joc_70064
crossref_primary_10_1007_s10489_023_05057_7
crossref_primary_10_1007_s10489_024_05526_7
crossref_primary_10_3390_rs17111839
crossref_primary_10_1007_s11831_023_10017_y
crossref_primary_10_3390_s22166206
Cites_doi 10.1109/TNNLS.2019.2919608
10.1002/joc.3809
10.1109/TEVC.2019.2916183
10.1007/s00521-012-1137-5
10.1109/TEVC.2015.2424410
10.1007/s11069-018-3286-z
10.1007/s10462-019-09719-2
10.1002/met.1717
10.1007/s00521-016-2537-8
10.1109/MCI.2018.2840738
10.1016/j.proeng.2016.07.442
10.1016/j.eswa.2017.05.029
10.1007/s00521-016-2618-8
10.1146/annurev-bioeng-071516-044442
10.1016/j.atmosres.2015.09.021
10.1038/nature14236
10.1016/j.cageo.2017.06.011
10.1109/CVPR.2015.7298935
10.1145/3071178.3071229
10.1109/ICCV.2017.154
10.1109/ICSPCS.2018.8631773
10.1007/978-3-030-26969-2_8
10.1007/978-981-13-1544-2_37
10.1109/INVENTIVE.2016.7823234
10.1109/TCYB.2020.2983860
10.1609/aaai.v29i1.9354
10.1145/2783258.2783275
10.1007/978-3-030-05318-5_3
10.1007/978-3-030-29894-4_52
10.1145/3219819.3219837
10.1109/CVPR.2018.00061
10.1142/9789814730464_0010
10.1007/978-3-319-46487-9_40
10.1145/3292500.3330701
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8FD
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L6V
L7M
L~C
L~D
M0C
M0N
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
PTHSS
Q9U
DOI 10.1007/s10489-021-02507-y
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business (OCUL)
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
ProQuest One Psychology
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ProQuest Business Collection (Alumni Edition)

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-7497
EndPage 2719
ExternalDocumentID 10_1007_s10489_021_02507_y
GrantInformation_xml – fundername: Natural Science Foundation of Guangxi Zhuang Autonomous Region
  grantid: #2017GXNSFAA198228 and #2017GXNSFBA198153
  funderid: http://dx.doi.org/10.13039/100012547
– fundername: National Natural Science Foundation of China
  grantid: #61562008 and #41665006
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
23M
28-
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
77K
7WY
8FE
8FG
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIVO
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAK
LLZTM
M0C
M0N
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PSYQQ
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z7Z
Z81
Z83
Z88
Z8M
Z8N
Z8R
Z8T
Z8U
Z8W
Z92
ZMTXR
ZY4
~A9
~EX
77I
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c319t-bd68beb1c7d73faa7e083663a30e0e83ac967b92d5dfe6a3396148032a130d5c3
IEDL.DBID M7S
ISICitedReferencesCount 23
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000664574700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0924-669X
IngestDate Tue Nov 18 12:52:47 EST 2025
Tue Nov 18 22:43:19 EST 2025
Sat Nov 29 05:33:24 EST 2025
Fri Feb 21 02:47:41 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Neural structure optimization
Hyperparameter optimization
Deep neural networks
Neural architecture search
Precipitation prediction
Gene expression programming
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-bd68beb1c7d73faa7e083663a30e0e83ac967b92d5dfe6a3396148032a130d5c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0977-5211
PQID 2627004545
PQPubID 326365
PageCount 17
ParticipantIDs proquest_journals_2627004545
crossref_citationtrail_10_1007_s10489_021_02507_y
crossref_primary_10_1007_s10489_021_02507_y
springer_journals_10_1007_s10489_021_02507_y
PublicationCentury 2000
PublicationDate 20220200
2022-02-00
20220201
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 2
  year: 2022
  text: 20220200
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Boston
PublicationSubtitle The International Journal of Research on Intelligent Systems for Real Life Complex Problems
PublicationTitle Applied intelligence (Dordrecht, Netherlands)
PublicationTitleAbbrev Appl Intell
PublicationYear 2022
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Cramer, Kampouridis, Freitas, Alexandridis (CR17) 2017; 85
Jia, Guan, Liu, Yang (CR6) 2020; 2020
Shen, Wu, Suk (CR13) 2017; 19
Sun, Xue, Zhang, Yen (CR24) 2020; 24
CR19
Meyer, Kühnlein, Appelhans, Nauss (CR5) 2016; 169
CR18
CR39
CR16
Zhong, Ong, Cai (CR32) 2016; 20
CR38
CR15
CR12
CR11
Liu, Racah, Correa, Khosrowshahi, Lavers, Kunkel, Collins (CR14) 2016; 1605
Young, Hazarika, Poria, Cambria (CR9) 2018; 13
Sun, Xue, Zhang, Yen (CR25) 2020; 31
Komer, Bergstra, Eliasmith (CR45) 2019
Dufek, Augusto, Dias, Barbosa (CR8) 2017; 106
He, Guan, Zhang, Simmons (CR1) 2014; 34
Srivastava, Hinton, Krizhevsky (CR43) 2014; 15
CR2
CR3
Faradonbeh, Armaghani, Amnieh, Mohamad (CR34) 2018; 29
Darwish, Hassanien, Das (CR23) 2020; 53
CR29
Nazari (CR36) 2019; 31
CR28
Zhong, Feng, Cai (CR35) 2019; 25
Kim, Seo, Lee (CR7) 2016; 154
CR27
CR26
Yang, Yu, Lin, Kuo, Tseng (CR4) 2018; 25
CR22
CR44
CR21
Hoang, Tien Bui (CR30) 2018; 92
CR20
CR42
CR41
CR40
Peng, Changan, Jian (CR31) 2010; 27
Mnih, Kavukcuoglu, Silver, Rusu, Veness, Bellemare, Petersen (CR10) 2015; 518
Armaghani, Faradonbeh, Rezaei, Rashid, Amnieh (CR33) 2018; 29
Ferreira (CR37) 2001; 13
V Mnih (2507_CR10) 2015; 518
J Zhong (2507_CR32) 2016; 20
H Meyer (2507_CR5) 2016; 169
A Darwish (2507_CR23) 2020; 53
YN Sun (2507_CR24) 2020; 24
S Cramer (2507_CR17) 2017; 85
C Ferreira (2507_CR37) 2001; 13
T Young (2507_CR9) 2018; 13
2507_CR26
2507_CR27
2507_CR28
2507_CR29
2507_CR22
2507_CR44
N Srivastava (2507_CR43) 2014; 15
AS Dufek (2507_CR8) 2017; 106
D Shen (2507_CR13) 2017; 19
2507_CR40
RS Faradonbeh (2507_CR34) 2018; 29
2507_CR41
2507_CR20
YN Sun (2507_CR25) 2020; 31
2507_CR42
2507_CR21
DJ Armaghani (2507_CR33) 2018; 29
S Kim (2507_CR7) 2016; 154
Z Jia (2507_CR6) 2020; 2020
Y Liu (2507_CR14) 2016; 1605
J Zhong (2507_CR35) 2019; 25
Y Peng (2507_CR31) 2010; 27
2507_CR2
2507_CR3
2507_CR19
2507_CR15
N Hoang (2507_CR30) 2018; 92
2507_CR16
2507_CR38
A Nazari (2507_CR36) 2019; 31
2507_CR39
B Komer (2507_CR45) 2019
2507_CR18
2507_CR11
2507_CR12
X He (2507_CR1) 2014; 34
TC Yang (2507_CR4) 2018; 25
References_xml – ident: CR22
– ident: CR18
– volume: 31
  start-page: 1242
  issue: 4
  year: 2020
  end-page: 1254
  ident: CR25
  article-title: Completely automated CNN architecture design based on blocks
  publication-title: IEEE transactions on neural networks and learning systems
  doi: 10.1109/TNNLS.2019.2919608
– volume: 34
  start-page: 1898
  issue: 6
  year: 2014
  end-page: 1912
  ident: CR1
  article-title: A wavelet-based multiple linear regression model for forecasting monthly rainfall
  publication-title: Int J Climatol
  doi: 10.1002/joc.3809
– ident: CR39
– ident: CR2
– ident: CR16
– volume: 24
  start-page: 394
  issue: 2
  year: 2020
  end-page: 407
  ident: CR24
  article-title: Evolving deep convolutional neural networks for image classification
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2019.2916183
– ident: CR12
– volume: 25
  start-page: 1
  issue: 7
  year: 2019
  end-page: 14
  ident: CR35
  article-title: Multifactorial genetic programming for symbolic regression problems
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics
– volume: 31
  start-page: 767
  issue: 2
  year: 2019
  end-page: 776
  ident: CR36
  article-title: Application of gene expression programming to predict the compressive damage of lightweight aluminosilicate geopolymer
  publication-title: Neural Comput & Applic
  doi: 10.1007/s00521-012-1137-5
– ident: CR29
– volume: 20
  start-page: 65
  issue: 1
  year: 2016
  end-page: 80
  ident: CR32
  article-title: Self-learning gene expression programming
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2015.2424410
– ident: CR40
– ident: CR27
– ident: CR42
– volume: 92
  start-page: 1871
  issue: 3
  year: 2018
  end-page: 1887
  ident: CR30
  article-title: Spatial prediction of rainfall-induced shallow landslides using gene expression programming integrated with GIS: a case study in Vietnam
  publication-title: Nat Hazards
  doi: 10.1007/s11069-018-3286-z
– ident: CR21
– volume: 53
  start-page: 1767
  issue: 3
  year: 2020
  end-page: 1812
  ident: CR23
  article-title: A survey of swarm and evolutionary computing approaches for deep learning
  publication-title: Artif Intell Rev
  doi: 10.1007/s10462-019-09719-2
– volume: 25
  start-page: 510
  issue: 4
  year: 2018
  end-page: 522
  ident: CR4
  article-title: Predictor selection method for the construction of support vector machine (SVM)-based typhoon rainfall forecasting models using a non-dominated sorting genetic algorithm
  publication-title: Meteorol Appl
  doi: 10.1002/met.1717
– ident: CR19
– volume: 29
  start-page: 269
  issue: 6
  year: 2018
  end-page: 281
  ident: CR34
  article-title: Prediction and minimization of blast-induced flyrock using gene expression programming and firefly algorithm
  publication-title: Neural Comput & Applic
  doi: 10.1007/s00521-016-2537-8
– ident: CR44
– ident: CR3
– ident: CR15
– ident: CR38
– volume: 27
  start-page: 1585
  issue: 1
  year: 2010
  end-page: 1589
  ident: CR31
  article-title: Multicellular gene expression programming algorithm for function optimization
  publication-title: Control Theory & Applications
– volume: 13
  start-page: 55
  issue: 3
  year: 2018
  end-page: 75
  ident: CR9
  article-title: Recent trends in deep learning based natural language processing. ieee
  publication-title: Computational intelligenCe magazine
  doi: 10.1109/MCI.2018.2840738
– volume: 154
  start-page: 1231
  year: 2016
  end-page: 1236
  ident: CR7
  article-title: Modeling of rainfall by combining neural computation and wavelet technique
  publication-title: Procedia Eng
  doi: 10.1016/j.proeng.2016.07.442
– volume: 85
  start-page: 169
  issue: 18
  year: 2017
  end-page: 181
  ident: CR17
  article-title: An extensive evaluation of seven machine learning methods for rainfall prediction in weather derivatives
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2017.05.029
– volume: 29
  start-page: 1115
  issue: 11
  year: 2018
  end-page: 1125
  ident: CR33
  article-title: Settlement prediction of the rock-socketed piles through a new technique based on gene expression programming
  publication-title: Neural Comput & Applic
  doi: 10.1007/s00521-016-2618-8
– volume: 13
  start-page: 87
  issue: 2
  year: 2001
  end-page: 129
  ident: CR37
  article-title: Gene expression programming: a new adaptive algorithm for solving problems
  publication-title: Complex Systems
– ident: CR11
– volume: 19
  start-page: 221
  issue: 1
  year: 2017
  end-page: 248
  ident: CR13
  article-title: Deep learning in medical image analysis
  publication-title: Annu Rev Biomed Eng
  doi: 10.1146/annurev-bioeng-071516-044442
– start-page: 97
  year: 2019
  end-page: 111
  ident: CR45
  publication-title: Hyperopt-Sklearn
– volume: 169
  start-page: 424
  year: 2016
  end-page: 433
  ident: CR5
  article-title: Comparison of four machine learning algorithms for their applicability in satellite-based optical rainfall retrievals
  publication-title: Atmos Res
  doi: 10.1016/j.atmosres.2015.09.021
– ident: CR28
– ident: CR41
– volume: 15
  start-page: 1929
  issue: 1
  year: 2014
  end-page: 1958
  ident: CR43
  article-title: Dropout: a simple way to prevent neural networks from overfitting
  publication-title: J Mach Learn Res
– volume: 1605
  year: 2016
  ident: CR14
  article-title: Application of deep convolutional neural networks for detecting extreme weather in climate datasets
  publication-title: Computer Vision and Pattern Recognition arXiv
– ident: CR26
– volume: 2020
  start-page: 1
  issue: 2
  year: 2020
  end-page: 15
  ident: CR6
  article-title: Influence of short-term rainfall forecast error on flood forecast operation: a risk assessment based on Bayesian theory
  publication-title: Hum Ecol Risk Assess
– volume: 518
  start-page: 529
  issue: 7540
  year: 2015
  end-page: 533
  ident: CR10
  article-title: Human-level control through deep reinforcement learning
  publication-title: Nature
  doi: 10.1038/nature14236
– ident: CR20
– volume: 106
  start-page: 139
  year: 2017
  end-page: 149
  ident: CR8
  article-title: Application of evolutionary computation on ensemble forecast of quantitative precipitation
  publication-title: Comput Geosci
  doi: 10.1016/j.cageo.2017.06.011
– ident: 2507_CR12
  doi: 10.1109/CVPR.2015.7298935
– volume: 85
  start-page: 169
  issue: 18
  year: 2017
  ident: 2507_CR17
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2017.05.029
– ident: 2507_CR26
  doi: 10.1145/3071178.3071229
– volume: 92
  start-page: 1871
  issue: 3
  year: 2018
  ident: 2507_CR30
  publication-title: Nat Hazards
  doi: 10.1007/s11069-018-3286-z
– volume: 13
  start-page: 87
  issue: 2
  year: 2001
  ident: 2507_CR37
  publication-title: Complex Systems
– volume: 31
  start-page: 1242
  issue: 4
  year: 2020
  ident: 2507_CR25
  publication-title: IEEE transactions on neural networks and learning systems
  doi: 10.1109/TNNLS.2019.2919608
– ident: 2507_CR28
  doi: 10.1109/ICCV.2017.154
– ident: 2507_CR44
  doi: 10.1109/ICSPCS.2018.8631773
– volume: 19
  start-page: 221
  issue: 1
  year: 2017
  ident: 2507_CR13
  publication-title: Annu Rev Biomed Eng
  doi: 10.1146/annurev-bioeng-071516-044442
– ident: 2507_CR39
  doi: 10.1007/978-3-030-26969-2_8
– ident: 2507_CR16
  doi: 10.1007/978-981-13-1544-2_37
– ident: 2507_CR21
– ident: 2507_CR40
– volume: 13
  start-page: 55
  issue: 3
  year: 2018
  ident: 2507_CR9
  publication-title: Computational intelligenCe magazine
  doi: 10.1109/MCI.2018.2840738
– ident: 2507_CR42
– volume: 2020
  start-page: 1
  issue: 2
  year: 2020
  ident: 2507_CR6
  publication-title: Hum Ecol Risk Assess
– volume: 53
  start-page: 1767
  issue: 3
  year: 2020
  ident: 2507_CR23
  publication-title: Artif Intell Rev
  doi: 10.1007/s10462-019-09719-2
– volume: 24
  start-page: 394
  issue: 2
  year: 2020
  ident: 2507_CR24
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2019.2916183
– volume: 31
  start-page: 767
  issue: 2
  year: 2019
  ident: 2507_CR36
  publication-title: Neural Comput & Applic
  doi: 10.1007/s00521-012-1137-5
– volume: 15
  start-page: 1929
  issue: 1
  year: 2014
  ident: 2507_CR43
  publication-title: J Mach Learn Res
– ident: 2507_CR2
  doi: 10.1109/INVENTIVE.2016.7823234
– ident: 2507_CR29
  doi: 10.1109/TCYB.2020.2983860
– volume: 29
  start-page: 1115
  issue: 11
  year: 2018
  ident: 2507_CR33
  publication-title: Neural Comput & Applic
  doi: 10.1007/s00521-016-2618-8
– start-page: 97
  volume-title: Hyperopt-Sklearn
  year: 2019
  ident: 2507_CR45
– ident: 2507_CR38
– ident: 2507_CR19
  doi: 10.1609/aaai.v29i1.9354
– ident: 2507_CR15
  doi: 10.1145/2783258.2783275
– ident: 2507_CR22
  doi: 10.1007/978-3-030-05318-5_3
– volume: 20
  start-page: 65
  issue: 1
  year: 2016
  ident: 2507_CR32
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2015.2424410
– volume: 1605
  year: 2016
  ident: 2507_CR14
  publication-title: Computer Vision and Pattern Recognition arXiv
– ident: 2507_CR27
  doi: 10.1007/978-3-030-29894-4_52
– ident: 2507_CR20
  doi: 10.1145/3219819.3219837
– volume: 169
  start-page: 424
  year: 2016
  ident: 2507_CR5
  publication-title: Atmos Res
  doi: 10.1016/j.atmosres.2015.09.021
– volume: 25
  start-page: 1
  issue: 7
  year: 2019
  ident: 2507_CR35
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics
– ident: 2507_CR41
  doi: 10.1109/CVPR.2018.00061
– ident: 2507_CR3
  doi: 10.1142/9789814730464_0010
– volume: 29
  start-page: 269
  issue: 6
  year: 2018
  ident: 2507_CR34
  publication-title: Neural Comput & Applic
  doi: 10.1007/s00521-016-2537-8
– volume: 518
  start-page: 529
  issue: 7540
  year: 2015
  ident: 2507_CR10
  publication-title: Nature
  doi: 10.1038/nature14236
– ident: 2507_CR11
  doi: 10.1007/978-3-319-46487-9_40
– volume: 106
  start-page: 139
  year: 2017
  ident: 2507_CR8
  publication-title: Comput Geosci
  doi: 10.1016/j.cageo.2017.06.011
– volume: 154
  start-page: 1231
  year: 2016
  ident: 2507_CR7
  publication-title: Procedia Eng
  doi: 10.1016/j.proeng.2016.07.442
– volume: 34
  start-page: 1898
  issue: 6
  year: 2014
  ident: 2507_CR1
  publication-title: Int J Climatol
  doi: 10.1002/joc.3809
– volume: 25
  start-page: 510
  issue: 4
  year: 2018
  ident: 2507_CR4
  publication-title: Meteorol Appl
  doi: 10.1002/met.1717
– ident: 2507_CR18
  doi: 10.1145/3292500.3330701
– volume: 27
  start-page: 1585
  issue: 1
  year: 2010
  ident: 2507_CR31
  publication-title: Control Theory & Applications
SSID ssj0003301
Score 2.4000823
Snippet Deep neural networks (DNN) have gained remarkable success on many rainfall predictions tasks in recent years. However, the performance of DNN highly relies...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2703
SubjectTerms Artificial Intelligence
Artificial neural networks
Back propagation
Back propagation networks
Computer Science
Gene expression
Genetic algorithms
Machines
Manufacturing
Mechanical Engineering
Optimization
Precipitation
Processes
Rainfall
Searching
Support vector machines
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB60evBifWK1Sg7eNLButkn2WNTiQar4KL0t2WyKBbst7Vbov3eSZlsVFfS4bDIMk2QezMw3AKciCgxTaUBDE3MaaYxTUhlF1JjApJlC3l2ivXMr2m3Z7cb3vilsUla7lylJp6k_NLtFtrwnxPAX7bags1VYQ3Mn7cCGh8fOQv9ihO7m5GFkQTmPu75V5nsan83R0sf8khZ11qZV_R-fW7DpvUvSnF-HbVgx-Q5Uy8kNxD_kXbhr5kRNi6HDayUvGIuOLQb4wNbGkCFqkYFvzyRX7TZx03IIerdkZLEwRh7W235lfdcXsQfPreunyxvqRytQjW-uoGnGZYpqWotMsJ5SwliUas4UC_CQJFM65iKNw6yR9QxXjMUWMDRgoUKblzU024dKPszNAZAe0tAWhZ9L9EaElgq9AMOlUVGDZcbU4KKUcKI9g3b8xWuyREy2EktQYomTWDKrwdliz2iOuvHr6np5cIl_gZMk5DalHqGDWIPz8qCWv3-mdvi35UewEdqOCFfIXYdKMZ6aY1jXb0V_Mj5xN_MdX5rfJw
  priority: 102
  providerName: Springer Nature
Title An automatic hyperparameter optimization DNN model for precipitation prediction
URI https://link.springer.com/article/10.1007/s10489-021-02507-y
https://www.proquest.com/docview/2627004545
Volume 52
WOSCitedRecordID wos000664574700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer Online Journals
  customDbUrl:
  eissn: 1573-7497
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003301
  issn: 0924-669X
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB60evBifWK1lhy8aXDdbJPdk9QXgroWn9XLkk1SFLStfQj9905i1qKgFy-BsLsh7GRemZlvALZEFBgm84CGJuE0Uuin5HEUUWMCk2uJe3eB9rtzkaZxq5U0_YXbwKdVFjLRCWrdVfaOfDfkNkQaocLf771R2zXKRld9C41pmLEoCXsude_6SxKjr-465qGPQTlPWr5oxpfORTZZKERnGq0AQcffFdPE2vwRIHV656T83x0vwLy3OEnj84gswpTpLEG56OZAPHMvw2WjQ-Ro2HUYruQJ_dO-xQV_tfkypIuS5dWXbJKjNCWugw5Bi5f0LD5Gz0N925l-drUSK3B7cnxzeEp9uwWqkA-HNNc8zlF0K6EFa0spjEWu5kyyAAkXM6kSLvIk1HXdNlwyllgQ0YCFEvWgriu2CqVOt2PWgLRxDWWR-XmMFopQsUTLwPDYyKjOtDEV2Cv-dab8Bm1LjJdsgqJs6ZMhfTJHn2xcge2vb3qfSBx_vl0tiJJ5rhxkE4pUYKcg6-Tx76ut_73aBsyFtirCJXNXoTTsj8wmzKr34fOgX4Npcf9Qg5mD47R5hbMzQXG8CA5r7rTi2Kw_4nh1ffcBWVruvw
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9tAEB7xkuDCuyI8yh7oqawwXmfXPlQIQREowe2BotzMenejRoIkJKFV_hS_sTObNVGRyo1Dj5bt1dr-dnbGM_N9AAcqiZzQZcRjl0meGIxTyjRJuHORK63GuftE-21T5XnaamXfZ-C56oWhssrKJnpDbXuG_pEfxZJSpAlu-Cf9R06qUZRdrSQ0JrBouPFvDNmGX67O8ft-iuOLrzdnlzyoCnCDcBvx0sq0RAtllFWirbVyRNAshRYRzi8V2mRSlVls67btpBYiI67MSMQazb2tG4HjzsJ8IlJF66qh-IvlF8LLLUcY03Aps1Zo0gmtegkVJ8UYvKPXofj4741w6t2-Ssj6fe5i5X97Q6uwHDxqdjpZAmsw47rrsFKpVbBgvDbg22mX6adRz3PUsp8Yfw-I9_yB6oFYDy3nQ2hJZed5zrxCEEOPnvWJ_6MfqMzpyHZ8L8gm_HiXx_oAc91e120Ba-MYhpQHZIoemDKpRs_HydTppC6sczU4rr5tYcIESfLjvpiyRBMeCsRD4fFQjGvw-eWe_oRp5M2rdysQFMHqDIspAmpwWMFoevrfo22_Pdo-LF7eXDeL5lXe2IGlmDpAfOH6LsyNBk9uDxbMr1FnOPjo1wODu_eG1x9R3UUs
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9tAEB7xEuLCo1A1FMoe2hOsMF5n1z4ghEijIpCbA6CIi1nvblSkkoQktMpf669jZrMmAqncOHC0bI_W3s_z8Dw-gK8qiZzQZcRjl0meGIxTyjRJuHORK63GtftE-9W5yvO03c5aM_Cv6oWhsspKJ3pFbXuG_pHvx5JSpAka_P1OKItoNZpH_XtODFKUaa3oNCYQOXPjvxi-DQ9PG7jX3-K4-f3i5AcPDAPcIPRGvLQyLVFbGWWV6GitHA1rlkKLCNeaCm0yqcostnXbcVILkdHczEjEGlW_rRuBcmdhXmGMSeWErfr1kxUQwlMvRxjfcCmzdmjYCW17CRUqxRjIowei-Pi5UZx6ui-Ss97mNVfe89taheXgabPjyaexBjOu-wFWKhYLFpTaOvw87jL9MOr52bXsF8blA5qHfkd1QqyHGvUutKqyRp4zzxzE0NNnfZoL0g8jzunI3voekQ24fJPH-ghz3V7XfQLWQRmGGAlkip6ZMqlGj8jJ1OmkLqxzNTio9rkwYYFEBfK7mE6PJmwUiI3CY6MY12D36Z7-ZALJq1dvVYAogjYaFlM01GCvgtT09P-lbb4ubQcWEVXF-Wl-9hmWYmoM8fXsWzA3Gjy4bVgwf0a3w8EX_2kwuHlrdD0C9qxOUA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+automatic+hyperparameter+optimization+DNN+model+for+precipitation+prediction&rft.jtitle=Applied+intelligence+%28Dordrecht%2C+Netherlands%29&rft.au=Peng%2C+Yuzhong&rft.au=Gong%2C+Daoqing&rft.au=Deng%2C+Chuyan&rft.au=Li%2C+Hongya&rft.date=2022-02-01&rft.issn=0924-669X&rft.eissn=1573-7497&rft.volume=52&rft.issue=3&rft.spage=2703&rft.epage=2719&rft_id=info:doi/10.1007%2Fs10489-021-02507-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10489_021_02507_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-669X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-669X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-669X&client=summon