Split S-ROCK Methods for High-Dimensional Stochastic Differential Equations
We propose explicit stochastic Runge–Kutta (RK) methods for high-dimensional Itô stochastic differential equations. By providing a linear error analysis and utilizing a Strang splitting-type approach, we construct them on the basis of orthogonal Runge–Kutta–Chebyshev methods of order 2. Our methods...
Gespeichert in:
| Veröffentlicht in: | Journal of scientific computing Jg. 97; H. 3; S. 62 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
Springer US
01.12.2023
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 0885-7474, 1573-7691 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | We propose explicit stochastic Runge–Kutta (RK) methods for high-dimensional Itô stochastic differential equations. By providing a linear error analysis and utilizing a Strang splitting-type approach, we construct them on the basis of orthogonal Runge–Kutta–Chebyshev methods of order 2. Our methods are of weak order 2 and have high computational accuracy for relatively large time-step size, as well as good stability properties. In addition, we take stochastic exponential RK methods of weak order 2 as competitors, and deal with implementation issues on Krylov subspace projection techniques for them. We carry out numerical experiments on a variety of linear and nonlinear problems to check the computational performance of the methods. As a result, it is shown that the proposed methods can be very effective on high-dimensional problems whose drift term has eigenvalues lying near the negative real axis and whose diffusion term does not have very large noise. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0885-7474 1573-7691 |
| DOI: | 10.1007/s10915-023-02354-8 |