Equilibrium optimizer with generalized opposition-based learning for multiple unmanned aerial vehicle path planning
Multiple unmanned aerial vehicle (UAV) path planning is the benchmark problem of multiple UAV application, which belongs to the non-deterministic polynomial problem. Its objective is to require multiple UAV to fly safely to the goal position according to their specific start position in three-dimens...
Gespeichert in:
| Veröffentlicht in: | Soft computing (Berlin, Germany) Jg. 28; H. 7-8; S. 6185 - 6198 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.04.2024
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 1432-7643, 1433-7479 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | Multiple unmanned aerial vehicle (UAV) path planning is the benchmark problem of multiple UAV application, which belongs to the non-deterministic polynomial problem. Its objective is to require multiple UAV to fly safely to the goal position according to their specific start position in three-dimensional space. This issue can be defined as a high-dimensional optimization problem, the solution of which requires optimization techniques with global optimization capabilities. Equilibrium optimizer (EO) is a population-based meta-heuristic algorithm. To improve the optimization ability of EO to solve high-dimensional problems, this paper proposes a modified equilibrium optimizer with generalized opposition-based learning (MGOEO), which improves the population activity by increasing the internal mutation and cross of the population. In addition, the generalized opposition-based learning is used to construct the population, which can effectively ensure that the algorithm has ability to jump out of the limitation of local optimal. First, numerical experiments show that MGOEO has better optimization precision than EO and several other swarm intelligent algorithms. Then, the paths of UAVs are simulated in three different obstacle environments. The simulation results show that MGOEO can obtain safe and smooth paths, which are better than EO and other eight state-of-the-art optimization algorithms. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1432-7643 1433-7479 |
| DOI: | 10.1007/s00500-023-09471-4 |