Fuzzy K-means clustering with reconstructed information

Clustering techniques play a pivotal role in unveiling the inherent structure of unlabeled data. When dealing with overlapping clusters, traditional hard clustering methods encounter challenges. As a representative of soft clustering methods, Fuzzy K-Means (FKM) enables data points to be assigned di...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal of machine learning and cybernetics Ročník 16; číslo 1; s. 43 - 53
Hlavní autoři: Huang, Honglan, Shi, Wei, Yang, Fangjie, Feng, Yanghe, Zhang, Longfei, Liang, Xingxing, Shi, Jun, Cheng, Guangquan, Huang, Jincai, Liu, Zhong
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.01.2025
Springer Nature B.V
Témata:
ISSN:1868-8071, 1868-808X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Clustering techniques play a pivotal role in unveiling the inherent structure of unlabeled data. When dealing with overlapping clusters, traditional hard clustering methods encounter challenges. As a representative of soft clustering methods, Fuzzy K-Means (FKM) enables data points to be assigned different degrees of membership to multiple clusters, offering a solution to this problem. However, when dealing with high-dimensional data, the performance of FKM is often affected by redundant features and noise. To address this limitation, this paper introduces a Fuzzy K-Means Clustering with Reconstructed Information (FKMRI) method. This method combines the reconstruction term with a cluster weight variable to effectively capture the true nature of data structure, thereby enhancing the clustering capability of FKM in high-dimensional spaces. We theoretically analyze the convergence of the FKMRI algorithm and prove its time complexity to be O ( c + P ( c ) ) n d 2 + c n d . Finally, we evaluate the performance of FKMRI on standard benchmark datasets including Yale-32x32, Yale-64x64, ORL-32x32, and ORL-64x64. The results demonstrate that, in comparison to five current state-of-the-art algorithms (K-Means, FKM, Kernel-km, RSFKM, DFKM), FKMRI exhibits an average improvement of over 18% in terms of accuracy rate (ACC) and normalized mutual information (NMI). These findings convincingly validate the effectiveness and efficiency of the proposed algorithm in handling high-dimensional data clustering, providing valuable support for related research fields.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1868-8071
1868-808X
DOI:10.1007/s13042-024-02167-7