Casimir pistons with generalized boundary conditions: a step forward

In this work we study the Casimir effect for massless scalar fields propagating in a piston geometry of the type I × N where I is an interval of the real line and N is a smooth compact Riemannian manifold. Our analysis represents a generalization of previous results obtained for pistons configuratio...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Analysis and mathematical physics Ročník 11; číslo 2
Hlavní autoři: Fucci, Guglielmo, Kirsten, Klaus, Muñoz-Castañeda, Jose M.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cham Springer International Publishing 01.06.2021
Springer Nature B.V
Témata:
ISSN:1664-2368, 1664-235X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this work we study the Casimir effect for massless scalar fields propagating in a piston geometry of the type I × N where I is an interval of the real line and N is a smooth compact Riemannian manifold. Our analysis represents a generalization of previous results obtained for pistons configurations as we consider all possible boundary conditions that are allowed to be imposed on the scalar fields. We employ the spectral zeta function formalism in the framework of scattering theory in order to obtain an expression for the Casimir energy and the corresponding Casimir force on the piston. We provide explicit results for the Casimir force when the manifold N is a d -dimensional sphere and a disk.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1664-2368
1664-235X
DOI:10.1007/s13324-021-00507-2