Casimir pistons with generalized boundary conditions: a step forward
In this work we study the Casimir effect for massless scalar fields propagating in a piston geometry of the type I × N where I is an interval of the real line and N is a smooth compact Riemannian manifold. Our analysis represents a generalization of previous results obtained for pistons configuratio...
Uloženo v:
| Vydáno v: | Analysis and mathematical physics Ročník 11; číslo 2 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Cham
Springer International Publishing
01.06.2021
Springer Nature B.V |
| Témata: | |
| ISSN: | 1664-2368, 1664-235X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In this work we study the Casimir effect for massless scalar fields propagating in a piston geometry of the type
I
×
N
where
I
is an interval of the real line and
N
is a smooth compact Riemannian manifold. Our analysis represents a generalization of previous results obtained for pistons configurations as we consider all possible boundary conditions that are allowed to be imposed on the scalar fields. We employ the spectral zeta function formalism in the framework of scattering theory in order to obtain an expression for the Casimir energy and the corresponding Casimir force on the piston. We provide explicit results for the Casimir force when the manifold
N
is a
d
-dimensional sphere and a disk. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1664-2368 1664-235X |
| DOI: | 10.1007/s13324-021-00507-2 |