Robustness in Nonsmooth Nonconvex Optimization Problems

In this paper, the robust approach (the worst case approach) for nonsmooth nonconvex optimization problems with uncertainty data is studied. First various robust constraint qualifications are introduced based on the concept of tangential subdifferential. Further, robust necessary and sufficient opti...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Positivity : an international journal devoted to the theory and applications of positivity in analysis Ročník 25; číslo 2; s. 701 - 729
Hlavní autoři: Mashkoorzadeh, F., Movahedian, N., Nobakhtian, S.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cham Springer International Publishing 01.04.2021
Springer Nature B.V
Témata:
ISSN:1385-1292, 1572-9281
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, the robust approach (the worst case approach) for nonsmooth nonconvex optimization problems with uncertainty data is studied. First various robust constraint qualifications are introduced based on the concept of tangential subdifferential. Further, robust necessary and sufficient optimality conditions are derived in the absence of the convexity of the uncertain sets and the concavity of the related functions with respect to the uncertain parameters. Finally, the results are applied to obtain the necessary and sufficient optimality conditions for robust weakly efficient solutions in multiobjective programming problems. In addition, several examples are provided to illustrate the advantages of the obtained outcomes.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1385-1292
1572-9281
DOI:10.1007/s11117-020-00783-5