Discrete Gaussian measures and new bounds of the smoothing parameter for lattices

In this paper, we start with a discussion of discrete Gaussian measures on lattices. Several results of Banaszczyk are analyzed, a simple form of uncertainty principle for discrete Gaussian measure is formulated. In the second part of the paper we prove two new bounds for the smoothing parameter of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applicable algebra in engineering, communication and computing Jg. 32; H. 5; S. 637 - 650
Hauptverfasser: Zheng, Zhongxiang, Zhao, Chunhuan, Xu, Guangwu
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.11.2021
Springer Nature B.V
Schlagworte:
ISSN:0938-1279, 1432-0622
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we start with a discussion of discrete Gaussian measures on lattices. Several results of Banaszczyk are analyzed, a simple form of uncertainty principle for discrete Gaussian measure is formulated. In the second part of the paper we prove two new bounds for the smoothing parameter of lattices. Under the natural assumption that ε is suitably small, we obtain two estimations of the smoothing parameter: η ε ( Z ) ≤ ln ( ε 44 + 2 ε ) π . This is a practically useful case. For this case, our upper bound is very close to the exact value of η ε ( Z ) in that ln ( ε 44 + 2 ε ) π - η ε ( Z ) ≤ ε 2 552 . For a lattice L ⊂ R n of dimension n , η ε ( L ) ≤ ln ( n - 1 + 2 n ε ) π bl ~ ( L ) .
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0938-1279
1432-0622
DOI:10.1007/s00200-020-00417-z