Discrete Gaussian measures and new bounds of the smoothing parameter for lattices

In this paper, we start with a discussion of discrete Gaussian measures on lattices. Several results of Banaszczyk are analyzed, a simple form of uncertainty principle for discrete Gaussian measure is formulated. In the second part of the paper we prove two new bounds for the smoothing parameter of...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applicable algebra in engineering, communication and computing Ročník 32; číslo 5; s. 637 - 650
Hlavní autoři: Zheng, Zhongxiang, Zhao, Chunhuan, Xu, Guangwu
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.11.2021
Springer Nature B.V
Témata:
ISSN:0938-1279, 1432-0622
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this paper, we start with a discussion of discrete Gaussian measures on lattices. Several results of Banaszczyk are analyzed, a simple form of uncertainty principle for discrete Gaussian measure is formulated. In the second part of the paper we prove two new bounds for the smoothing parameter of lattices. Under the natural assumption that ε is suitably small, we obtain two estimations of the smoothing parameter: η ε ( Z ) ≤ ln ( ε 44 + 2 ε ) π . This is a practically useful case. For this case, our upper bound is very close to the exact value of η ε ( Z ) in that ln ( ε 44 + 2 ε ) π - η ε ( Z ) ≤ ε 2 552 . For a lattice L ⊂ R n of dimension n , η ε ( L ) ≤ ln ( n - 1 + 2 n ε ) π bl ~ ( L ) .
AbstractList In this paper, we start with a discussion of discrete Gaussian measures on lattices. Several results of Banaszczyk are analyzed, a simple form of uncertainty principle for discrete Gaussian measure is formulated. In the second part of the paper we prove two new bounds for the smoothing parameter of lattices. Under the natural assumption that ε is suitably small, we obtain two estimations of the smoothing parameter: ηε(Z)≤ln(ε44+2ε)π. This is a practically useful case. For this case, our upper bound is very close to the exact value of ηε(Z) in that ln(ε44+2ε)π-ηε(Z)≤ε2552.For a lattice L⊂Rn of dimension n, ηε(L)≤ln(n-1+2nε)πbl~(L).
In this paper, we start with a discussion of discrete Gaussian measures on lattices. Several results of Banaszczyk are analyzed, a simple form of uncertainty principle for discrete Gaussian measure is formulated. In the second part of the paper we prove two new bounds for the smoothing parameter of lattices. Under the natural assumption that ε is suitably small, we obtain two estimations of the smoothing parameter: η ε ( Z ) ≤ ln ( ε 44 + 2 ε ) π . This is a practically useful case. For this case, our upper bound is very close to the exact value of η ε ( Z ) in that ln ( ε 44 + 2 ε ) π - η ε ( Z ) ≤ ε 2 552 . For a lattice L ⊂ R n of dimension n , η ε ( L ) ≤ ln ( n - 1 + 2 n ε ) π bl ~ ( L ) .
Author Zhao, Chunhuan
Xu, Guangwu
Zheng, Zhongxiang
Author_xml – sequence: 1
  givenname: Zhongxiang
  surname: Zheng
  fullname: Zheng, Zhongxiang
  organization: Institute for Advanced Study, Tsinghua University
– sequence: 2
  givenname: Chunhuan
  surname: Zhao
  fullname: Zhao, Chunhuan
  organization: Institute for Advanced Study, Tsinghua University
– sequence: 3
  givenname: Guangwu
  surname: Xu
  fullname: Xu, Guangwu
  email: gxu4uwm@uwm.edu
  organization: Key Laboratory of Cryptologic Technology and Information Security of Ministry of Education, School of Cyber Science and Technology, Shandong University, Department of EE & CS, University of Wisconsin-Milwaukee
BookMark eNp9kEFLAzEQhYNUsK3-AU8Bz6uT7DZpjlK1CgUR9Bxmd6ftljapSRaxv97VFQQPvby5vO-94Y3YwHlHjF0KuBYA-iYCSICskwygEDo7nLChKHKZgZJywIZg8mkmpDZnbBTjBgCUKfSQvdw1sQqUiM-xjbFBx3eEsQ0UObqaO_rgpW9dHblf8rQmHnfep3XjVnyPAXcdGvjSB77FlJqK4jk7XeI20sXvHbO3h_vX2WO2eJ4_zW4XWZULkzKsUappiUpirUuja2XIVEWlcEogTE2lzIUGzAutSqUJJdQTKUgVk7wqlczH7KrP3Qf_3lJMduPb4LpKKyfaCFkUSnUu2buq4GMMtLT70OwwfFoB9ns6209nO7E_09lDB03_QVWTMDXepYDN9jia92jsetyKwt9XR6gvDC2GBw
CitedBy_id crossref_primary_10_1371_journal_pone_0328688
crossref_primary_10_1155_2024_7777881
Cites_doi 10.1007/BF01445125
10.1016/S0166-218X(02)00216-0
10.1007/BF02711514
10.1137/S0097539705447360
10.1007/BF02574039
10.1090/S0002-9939-2013-11744-2
10.1007/978-1-4615-0897-7
10.1137/0149053
10.1109/CCC.2013.31
10.1145/1374376.1374407
10.1109/CCC.2007.12
10.1007/978-3-662-44709-3_20
ContentType Journal Article
Copyright Springer-Verlag GmbH Germany, part of Springer Nature 2020
Springer-Verlag GmbH Germany, part of Springer Nature 2020.
Copyright_xml – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2020
– notice: Springer-Verlag GmbH Germany, part of Springer Nature 2020.
DBID AAYXX
CITATION
DOI 10.1007/s00200-020-00417-z
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISSN 1432-0622
EndPage 650
ExternalDocumentID 10_1007_s00200_020_00417_z
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
1SB
203
23M
28-
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ARAPS
ATHPR
AYFIA
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
M7S
PHGZM
PHGZT
PQGLB
PTHSS
ID FETCH-LOGICAL-c319t-ada268ba62ad7b97d69e9c4c6a8e019deb23170a3476b67ea20d521e6453cb623
IEDL.DBID RSV
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000515937800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0938-1279
IngestDate Thu Sep 18 00:04:00 EDT 2025
Sat Nov 29 05:58:19 EST 2025
Tue Nov 18 21:08:12 EST 2025
Fri Feb 21 02:47:01 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords 11T71
Lattices
Discrete Gaussian measure
Smoothing parameter
11H06
94A60
Lattice based cryptography
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-ada268ba62ad7b97d69e9c4c6a8e019deb23170a3476b67ea20d521e6453cb623
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2579124466
PQPubID 2043728
PageCount 14
ParticipantIDs proquest_journals_2579124466
crossref_primary_10_1007_s00200_020_00417_z
crossref_citationtrail_10_1007_s00200_020_00417_z
springer_journals_10_1007_s00200_020_00417_z
PublicationCentury 2000
PublicationDate 2021-11-01
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Applicable algebra in engineering, communication and computing
PublicationTitleAbbrev AAECC
PublicationYear 2021
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Banaszczyk (CR3) 1996; 16
Micciancio, Regev (CR9) 2007; 37
Tian, Liu, Xu (CR17) 2014; 142
Peikert (CR12) 2010; 2010
CR5
CR7
Stein, Shakarchi (CR15) 2003
CR18
Banaszczyk (CR2) 1995; 13
Cai (CR4) 2003; 126
CR16
CR14
Micciancio, Walter (CR10) 2017; 2017
CR13
CR11
Banaszczyk (CR1) 1993; 296
Donoho, Stark (CR6) 1989; 49
Micciancio, Goldwasser (CR8) 2002
W Banaszczyk (417_CR3) 1996; 16
D Micciancio (417_CR8) 2002
W Banaszczyk (417_CR1) 1993; 296
D Donoho (417_CR6) 1989; 49
D Micciancio (417_CR9) 2007; 37
W Banaszczyk (417_CR2) 1995; 13
E Stein (417_CR15) 2003
417_CR14
417_CR5
417_CR13
D Micciancio (417_CR10) 2017; 2017
C Tian (417_CR17) 2014; 142
417_CR7
417_CR11
J Cai (417_CR4) 2003; 126
C Peikert (417_CR12) 2010; 2010
417_CR18
417_CR16
References_xml – ident: CR18
– year: 2003
  ident: CR15
  publication-title: Fourier Analysis—An Introduction
– volume: 296
  start-page: 625
  issue: 4
  year: 1993
  end-page: 635
  ident: CR1
  article-title: New bounds in some transference theorems in the geometry of numbers
  publication-title: Mathematische Annalen
  doi: 10.1007/BF01445125
– ident: CR14
– volume: 126
  start-page: 9
  issue: 1
  year: 2003
  end-page: 31
  ident: CR4
  article-title: A new transference theorem in the geometry of numbers and new bounds for Ajtai’s connection factor
  publication-title: Discrete Appl. Math.
  doi: 10.1016/S0166-218X(02)00216-0
– ident: CR16
– ident: CR13
– volume: 16
  start-page: 305
  year: 1996
  end-page: 311
  ident: CR3
  article-title: Inequalities for convex bodies and polar reciprocal lattices in II: application of k-convexity
  publication-title: Discrete Comput. Geom.
  doi: 10.1007/BF02711514
– ident: CR11
– volume: 37
  start-page: 267
  issue: 1
  year: 2007
  end-page: 302
  ident: CR9
  article-title: Worst-case to average-case reductions based on Gaussian measures
  publication-title: SIAM J. Comput.
  doi: 10.1137/S0097539705447360
– volume: 13
  start-page: 217
  year: 1995
  end-page: 231
  ident: CR2
  article-title: Inequalites for convex bodies and polar reciprocal lattices in
  publication-title: Discrete Comput. Geom.
  doi: 10.1007/BF02574039
– ident: CR5
– ident: CR7
– volume: 142
  start-page: 47
  year: 2014
  end-page: 57
  ident: CR17
  article-title: Measure inequalities and the transference theorem in the geometry of numbers
  publication-title: Proc. Am. Math. Soc.
  doi: 10.1090/S0002-9939-2013-11744-2
– year: 2002
  ident: CR8
  publication-title: Complexity of Lattice Problems: A Cryptographic Perspective
  doi: 10.1007/978-1-4615-0897-7
– volume: 2017
  start-page: 455
  year: 2017
  end-page: 485
  ident: CR10
  article-title: Gaussian sampling over the integers: efficient, generic, constant-time
  publication-title: Proc. CRYPTO
– volume: 2010
  start-page: 80
  year: 2010
  end-page: 97
  ident: CR12
  article-title: An efficient and parallel Gaussian sampler for lattices
  publication-title: Proc. CRYPTO
– volume: 49
  start-page: 906
  year: 1989
  end-page: 931
  ident: CR6
  article-title: Uncertainty principles and signal recovery
  publication-title: SIAM J. Appl. Math.
  doi: 10.1137/0149053
– ident: 417_CR5
  doi: 10.1109/CCC.2013.31
– volume: 37
  start-page: 267
  issue: 1
  year: 2007
  ident: 417_CR9
  publication-title: SIAM J. Comput.
  doi: 10.1137/S0097539705447360
– volume-title: Fourier Analysis—An Introduction
  year: 2003
  ident: 417_CR15
– ident: 417_CR7
  doi: 10.1145/1374376.1374407
– volume-title: Complexity of Lattice Problems: A Cryptographic Perspective
  year: 2002
  ident: 417_CR8
  doi: 10.1007/978-1-4615-0897-7
– volume: 142
  start-page: 47
  year: 2014
  ident: 417_CR17
  publication-title: Proc. Am. Math. Soc.
  doi: 10.1090/S0002-9939-2013-11744-2
– ident: 417_CR11
  doi: 10.1109/CCC.2007.12
– volume: 2017
  start-page: 455
  year: 2017
  ident: 417_CR10
  publication-title: Proc. CRYPTO
– volume: 126
  start-page: 9
  issue: 1
  year: 2003
  ident: 417_CR4
  publication-title: Discrete Appl. Math.
  doi: 10.1016/S0166-218X(02)00216-0
– volume: 49
  start-page: 906
  year: 1989
  ident: 417_CR6
  publication-title: SIAM J. Appl. Math.
  doi: 10.1137/0149053
– volume: 16
  start-page: 305
  year: 1996
  ident: 417_CR3
  publication-title: Discrete Comput. Geom.
  doi: 10.1007/BF02711514
– volume: 296
  start-page: 625
  issue: 4
  year: 1993
  ident: 417_CR1
  publication-title: Mathematische Annalen
  doi: 10.1007/BF01445125
– ident: 417_CR13
  doi: 10.1007/978-3-662-44709-3_20
– volume: 13
  start-page: 217
  year: 1995
  ident: 417_CR2
  publication-title: Discrete Comput. Geom.
  doi: 10.1007/BF02574039
– ident: 417_CR14
– ident: 417_CR18
– volume: 2010
  start-page: 80
  year: 2010
  ident: 417_CR12
  publication-title: Proc. CRYPTO
– ident: 417_CR16
SSID ssj0006947
Score 2.2431886
Snippet In this paper, we start with a discussion of discrete Gaussian measures on lattices. Several results of Banaszczyk are analyzed, a simple form of uncertainty...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 637
SubjectTerms Artificial Intelligence
Computer Hardware
Computer Science
Lattices (mathematics)
Original Paper
Parameters
Smoothing
Symbolic and Algebraic Manipulation
Theory of Computation
Uncertainty principles
Upper bounds
Title Discrete Gaussian measures and new bounds of the smoothing parameter for lattices
URI https://link.springer.com/article/10.1007/s00200-020-00417-z
https://www.proquest.com/docview/2579124466
Volume 32
WOSCitedRecordID wos000515937800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer Journals
  customDbUrl:
  eissn: 1432-0622
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006947
  issn: 0938-1279
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BYYCBQgFRKMgDG1gKiWvHIwIKA1Q8K7bIsV2pUh-obhn66zmnSSoQIMGSxQ-dzvbdd7kXwDE3PA7SKKVhpJqUpUzS2CpBm9wGxkqudebB79yKdjt-fZX3eVKYK6LdC5dkJqnLZDePbALqzR1fJErQ2TKsoLqLfcOGx6dOKX-5zNqKoamO9lEoZJ4q8_0en9XRAmN-cYtm2qZV_R-dm7CRo0tyPr8OW7BkhzWoFp0bSP6Qa7B-V1ZrddvwcNlD4YHomVyrqfNZlWQw_3XoiBoagsibpL79kiOjLsGFxA1GeMJIFfGlwwc-pIYg-iV9NfHBdG4HXlpXzxc3NG-1QDW-wQlVRoU8ThUPlRGpFIZLKzXTXMUWQaBB-xuBRqAiJnjKhVVhYFDxW86akU4RQu1CZTga2j0gQisWhV000plihkWx0taDCKOjIOhKW4ezguOJzuuQ-3YY_aSsoJxxMMFPknEwmdXhpFzzNq_C8evsRnGQSf4iXYKiSXoyOK_DaXFwi-Gfd9v_2_QDWAt92EuWrtiAymQ8tYewqt8nPTc-ym7qB-_b4uA
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB2xScCBHVFWH7iBpZC4dnxEQAFRKpaCuEWO7UqVuqC65dCvZ5wmQSBAgksuXmR5mXmTmXkDcMgNj4M0SmkYqSplKZM0tkrQKreBsZJrnXnwn-ui0YhfXuRdnhTmimj3wiWZSeoy2c0jm4B6c8eTRAk6noZZhhrLM-Y_PD6X8pfLrKwYmupoH4VC5qky38_xWR19YMwvbtFM29SW_7fOFVjK0SU5nVyHVZiyvTVYLio3kPwhr8HibcnW6tbh_ryNwgPRM7lUI-ezKkl38uvQEdUzBJE3SX35JUf6LYIDiev28YRxVcRTh3d9SA1B9Es6auiD6dwGPNUummdXNC-1QDW-wSFVRoU8ThUPlRGpFIZLKzXTXMUWQaBB-xuBRqAiJnjKhVVhYFDxW86qkU4RQm3CTK_fs1tAhFYsCltopDPFDItipa0HEUZHQdCStgInxY4nOuch9-UwOknJoJztYIKfJNvBZFyBo3LM64SF49feu8VBJvmLdAmKJumXwXkFjouD-2j-ebbtv3U_gPmr5m09qV83bnZgIfQhMFnq4i7MDAcjuwdz-m3YdoP97Na-A5sZ5cQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZ4CcGBwQAxGJADN4gobZY0RwQMEDAN8RC3Kk0yCYl1iHYc9utxurY8BEiISy95yMrD-VzbnwF2uOGhFwcx9QPVoixmkoZWCdri1jNWcq1zD_79peh0wocH2f2QxZ9Hu5cuyXFOg2NpSrL9Z9PbrxLfHMrxqDN9HGGUoKNJmGYukN7Z6zf3lS7mMi8xhmY72kq-kEXazPdzfH6a3vHmFxdp_vK0a_-XeREWCtRJDsfHZAkmbFKHWlnRgRQXvA7zVxWLa7oM18ePqFQQVZNTNUxdtiXpj38ppkQlhiAiJ7Ery5SSQY_gQJL2B7jzKCFxlOJ9F2pDEBWTJ5W5ILt0Be7aJ7dHZ7QowUA13s2MKqN8HsaK-8qIWArDpZWaaa5Ci-DQoF2OAMRTARM85sIq3zMICCxnrUDHCK1WYSoZJHYNiNCKBX4PjXemmGFBqLR14MLowPN60jbgoFz9SBf85K5MxlNUMSvnKxjhJ8pXMBo1YLca8zxm5_i1d7Pc1Ki4qWmEKks6MThvwF65ie_NP8-2_rfu2zDbPW5Hl-ediw2Y811kTJ7R2ISp7GVoN2FGv2aP6ctWfoDfAJAD7qg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Discrete+Gaussian+measures+and+new+bounds+of+the+smoothing+parameter+for+lattices&rft.jtitle=Applicable+algebra+in+engineering%2C+communication+and+computing&rft.au=Zheng%2C+Zhongxiang&rft.au=Zhao%2C+Chunhuan&rft.au=Xu%2C+Guangwu&rft.date=2021-11-01&rft.issn=0938-1279&rft.eissn=1432-0622&rft.volume=32&rft.issue=5&rft.spage=637&rft.epage=650&rft_id=info:doi/10.1007%2Fs00200-020-00417-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00200_020_00417_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0938-1279&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0938-1279&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0938-1279&client=summon