Neural network approach for solving nonlocal boundary value problems

This paper proposes a radial basis function (RBF) network-based method for solving a nonlinear second-order elliptic equation with Dirichlet boundary conditions. The nonlocal term involved in the differential equation needs a completely different approach from the up-to-now-known methods for solving...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Neural computing & applications Ročník 32; číslo 17; s. 14153 - 14171
Hlavní autori: Palade, V., Petrov, M. S., Todorov, T. D.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: London Springer London 01.09.2020
Springer Nature B.V
Predmet:
ISSN:0941-0643, 1433-3058
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract This paper proposes a radial basis function (RBF) network-based method for solving a nonlinear second-order elliptic equation with Dirichlet boundary conditions. The nonlocal term involved in the differential equation needs a completely different approach from the up-to-now-known methods for solving boundary value problems by using neural networks. A numerical integration procedure is developed for computing the local L 2 -inner product. It is known that the non-variational methods are not effective in solving nonlocal problems. In this paper, the weak formulation of the nonlocal problem is reduced to the minimization of a nonlinear functional. Unlike many previous works, we use an integral objective functional for implementing the learning procedure. Well-distributed nodes are used as the centers of the RBF neural network. The weights of the RBF network are determined by a two-point step size gradient method. The neural network method proposed in this paper is an alternative to the finite-element method (FEM) for solving nonlocal boundary value problems in non-Lipschitz domains. A new variable learning rate strategy has been developed and implemented in order to avoid the divergence of the training process. A comparison between the proposed neural network approach and the FEM is illustrated by challenging examples, and the performance of both methods is thoroughly analyzed.
AbstractList This paper proposes a radial basis function (RBF) network-based method for solving a nonlinear second-order elliptic equation with Dirichlet boundary conditions. The nonlocal term involved in the differential equation needs a completely different approach from the up-to-now-known methods for solving boundary value problems by using neural networks. A numerical integration procedure is developed for computing the local L 2 -inner product. It is known that the non-variational methods are not effective in solving nonlocal problems. In this paper, the weak formulation of the nonlocal problem is reduced to the minimization of a nonlinear functional. Unlike many previous works, we use an integral objective functional for implementing the learning procedure. Well-distributed nodes are used as the centers of the RBF neural network. The weights of the RBF network are determined by a two-point step size gradient method. The neural network method proposed in this paper is an alternative to the finite-element method (FEM) for solving nonlocal boundary value problems in non-Lipschitz domains. A new variable learning rate strategy has been developed and implemented in order to avoid the divergence of the training process. A comparison between the proposed neural network approach and the FEM is illustrated by challenging examples, and the performance of both methods is thoroughly analyzed.
This paper proposes a radial basis function (RBF) network-based method for solving a nonlinear second-order elliptic equation with Dirichlet boundary conditions. The nonlocal term involved in the differential equation needs a completely different approach from the up-to-now-known methods for solving boundary value problems by using neural networks. A numerical integration procedure is developed for computing the local L2-inner product. It is known that the non-variational methods are not effective in solving nonlocal problems. In this paper, the weak formulation of the nonlocal problem is reduced to the minimization of a nonlinear functional. Unlike many previous works, we use an integral objective functional for implementing the learning procedure. Well-distributed nodes are used as the centers of the RBF neural network. The weights of the RBF network are determined by a two-point step size gradient method. The neural network method proposed in this paper is an alternative to the finite-element method (FEM) for solving nonlocal boundary value problems in non-Lipschitz domains. A new variable learning rate strategy has been developed and implemented in order to avoid the divergence of the training process. A comparison between the proposed neural network approach and the FEM is illustrated by challenging examples, and the performance of both methods is thoroughly analyzed.
Author Petrov, M. S.
Todorov, T. D.
Palade, V.
Author_xml – sequence: 1
  givenname: V.
  surname: Palade
  fullname: Palade, V.
  organization: Faculty of Engineering and Computing, Coventry University
– sequence: 2
  givenname: M. S.
  surname: Petrov
  fullname: Petrov, M. S.
  organization: Department of Technical Mechanics, Technical University of Gabrovo
– sequence: 3
  givenname: T. D.
  surname: Todorov
  fullname: Todorov, T. D.
  email: tdtodorov@tugab.bg
  organization: Department of Mathematics and Informatics, Technical University of Gabrovo
BookMark eNp9kEtPwzAQhC1UJNrCH-AUiXNg_Yx9ROUpIbjA2XITu6SkdrGTIv49hiAhcehl97Dz7YxmhiY-eIvQKYZzDFBdJABOcAkESmAS53mApphRWlLgcoKmoFg-C0aP0CylNQAwIfkUXT3aIZqu8Lb_CPGtMNttDKZ-LVyIRQrdrvWrIpt1oc6qZRh8Y-JnsTPdYIssXXZ2k47RoTNdsie_e45ebq6fF3flw9Pt_eLyoawpVn1pDCZKcCsJqIbaumKGy0YtmcFKVFJycLIWDVOc5dSACTPWOSWN5MJW4OgcnY1_s_H7YFOv12GIPltqwigTmOCKZRUZVXUMKUXr9Da2m5xaY9DfbemxLZ3b0j9taciQ_AfVbW_6Nvg-mrbbj9IRTdnHr2z8S7WH-gJGtH_J
CitedBy_id crossref_primary_10_1016_j_camwa_2023_04_026
crossref_primary_10_1016_j_heliyon_2023_e23439
crossref_primary_10_1109_ACCESS_2020_3048104
crossref_primary_10_3390_math11183935
crossref_primary_10_1016_j_rineng_2025_105114
crossref_primary_10_1038_s41598_021_94331_0
crossref_primary_10_1109_ACCESS_2025_3598376
Cites_doi 10.1137/110846397
10.1016/j.apnum.2005.11.007
10.1007/BF03177517
10.1016/j.cnsns.2007.04.024
10.1016/j.cam.2017.06.022
10.1016/j.advengsoft.2009.06.003
10.1002/cnm.522
10.1016/j.camwa.2018.06.019
10.14232/ejqtde.2012.1.58
10.21914/anziamj.v42i0.611
10.2307/2002483
10.1016/j.neucom.2008.12.004
10.1016/j.cam.2015.02.048
10.1016/j.camwa.2013.07.026
10.1137/050647797
10.1016/j.apnum.2013.01.005
10.1137/060669073
10.1023/A:1012784129883
10.1080/01630563.2010.519136
10.1002/mma.3759
10.1016/j.enganabound.2009.07.008
10.1137/1.9781611972030
10.1016/j.camwa.2014.12.014
10.1016/j.apm.2011.08.032
10.1016/j.enganabound.2018.05.012
10.1016/0893-6080(94)90031-0
10.1007/s12206-009-0510-5
10.1016/j.camwa.2014.01.014
10.1016/S0893-6080(03)00083-2
10.1007/s10492-011-0024-1
10.5937/SPSUNP1802071T
10.18637/jss.v060.i03
10.1090/S0025-5718-2011-02481-6
10.1007/s10492-007-0013-6
10.1016/j.joems.2013.03.001
10.1016/j.camwa.2011.06.037
10.1007/s10092-005-0097-x
10.1109/ICPR.2000.906151
10.1007/s00521-014-1762-2
10.1007/s11075-017-0454-2
10.1137/110822931
ContentType Journal Article
Copyright Springer-Verlag London Ltd., part of Springer Nature 2020
Springer-Verlag London Ltd., part of Springer Nature 2020.
Copyright_xml – notice: Springer-Verlag London Ltd., part of Springer Nature 2020
– notice: Springer-Verlag London Ltd., part of Springer Nature 2020.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.1007/s00521-020-04810-0
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central Korea
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Advanced Technologies & Aerospace Collection
Database_xml – sequence: 1
  dbid: P5Z
  name: Advanced Technologies & Aerospace Database
  url: https://search.proquest.com/hightechjournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1433-3058
EndPage 14171
ExternalDocumentID 10_1007_s00521_020_04810_0
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c319t-aa12965e8209d3ec74a58d9b4a19678850f8c6d49543050124aeff98a856e70f3
IEDL.DBID P5Z
ISICitedReferencesCount 11
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000560557000069&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0941-0643
IngestDate Wed Nov 05 02:13:40 EST 2025
Sat Nov 29 02:59:15 EST 2025
Tue Nov 18 21:56:24 EST 2025
Fri Feb 21 02:35:49 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 17
Keywords RBF neural network
Nonlocal nonlinear problem
Two-point step size gradient method
Variable learning rate
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-aa12965e8209d3ec74a58d9b4a19678850f8c6d49543050124aeff98a856e70f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2434612174
PQPubID 2043988
PageCount 19
ParticipantIDs proquest_journals_2434612174
crossref_primary_10_1007_s00521_020_04810_0
crossref_citationtrail_10_1007_s00521_020_04810_0
springer_journals_10_1007_s00521_020_04810_0
PublicationCentury 2000
PublicationDate 20200900
2020-09-00
20200901
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 9
  year: 2020
  text: 20200900
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Neural computing & applications
PublicationTitleAbbrev Neural Comput & Applic
PublicationYear 2020
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References Davydov, Oanhb (CR35) 2011; 62
Brandts, Korotov, Křížek, Šolc (CR5) 2009; 51
Grisvard (CR17) 2011
Themistoclakis, Vecchio (CR22) 2016; 292
Todorov (CR50) 2013; 66
Dai (CR24) 2012; 58
Kumar, Singh, Srivastava (CR42) 2013; 21
Andreev, Petrov, Todorov (CR49) 2005; 42
Petrov, Todorov (CR51) 2018; 79
Kanca (CR29) 2016; 39
Jianyu, Siwei, Yingjian, Yaping (CR12) 2003; 16
Khosravifard, Hematiyan (CR46) 2010; 34
Kumar, Kumar (CR25) 2009; 40
CR8
CR7
Szabó, Babuška (CR45) 1991
Ilati, Dehghan (CR11) 2018; 327
Aksoylu, Mengesha (CR19) 2020; 31
Brandts, Korotov, Křížek (CR4) 2007; 52
Gudi (CR26) 2012; 50
Liu, Wang (CR34) 2018; 100
Gaspar, Lisbona, Rodrigo, Kreiss, Lutstedt, Melqvist, Neytcheva (CR1) 2010
Wu (CR41) 1995; 4
Nie, Shu, Yu, An (CR30) 2014; 227
Kazem, Rad (CR37) 2012; 36
Sajavičius (CR33) 2014; 67
Li, Mazzucato, Nistor (CR48) 2010; 37
Hammer, Marlowe, Stroud (CR47) 1956; 10
Acosta, Armentano, Durán, Lombardi (CR15) 2007; 45
Dehghan (CR21) 2002; 19
Todorov (CR39) 2018; 76
Demlow, Georgoulis (CR18) 2012; 50
De Schepper, Slodivcka (CR32) 2000; 42
Corrêa, Menezes (CR20) 2004; 2004
Kim, Kim (CR38) 2009; 23
Birgin, Martínez, Raydan (CR43) 2014; 60
Tsoulos, Gavrilis, Glavas (CR14) 2009; 72
Todorov (CR40) 2015; 69
Jianyua, Siweia, Yingjiana, Yapinga (CR6) 2003; 16
Alves, Correa, Figueiredo (CR23) 2010; 2
Acosta, Armentano (CR16) 2011; 80
Nie, Yu (CR31) 2013; 68
Atluri, Shen (CR53) 2002; 3
Sanni (CR27) 2014; 2014
Aarts, van der Veer (CR13) 2001; 14
Shirvany, Hayati, Moradian (CR10) 2008; 13
Jung, Todorov (CR2) 2006; 56
Liu, Hong, Atluri (CR44) 2010; 60
Takeuchi, Kosugi (CR9) 1994; 7
Brandts, Korotov, Křížek (CR3) 2011; 56
Amster, De Napoli (CR28) 2006; 2006
Baymani, Effati, Niazmand, Kerayechian (CR36) 2015; 26
Todorov (CR52) 2018; 10
SN Atluri (4810_CR53) 2002; 3
4810_CR7
4810_CR8
L Jianyu (4810_CR12) 2003; 16
H Li (4810_CR48) 2010; 37
J Takeuchi (4810_CR9) 1994; 7
AB Andreev (4810_CR49) 2005; 42
S Kazem (4810_CR37) 2012; 36
B Szabó (4810_CR45) 1991
B Aksoylu (4810_CR19) 2020; 31
M Dehghan (4810_CR21) 2002; 19
W Themistoclakis (4810_CR22) 2016; 292
C Nie (4810_CR30) 2014; 227
G Dai (4810_CR24) 2012; 58
O Davydov (4810_CR35) 2011; 62
EG Birgin (4810_CR43) 2014; 60
FJS Corrêa (4810_CR20) 2004; 2004
M Kumar (4810_CR25) 2009; 40
Y Shirvany (4810_CR10) 2008; 13
J Brandts (4810_CR4) 2007; 52
M Ilati (4810_CR11) 2018; 327
CO Alves (4810_CR23) 2010; 2
G Acosta (4810_CR15) 2007; 45
M Baymani (4810_CR36) 2015; 26
G Acosta (4810_CR16) 2011; 80
IG Tsoulos (4810_CR14) 2009; 72
Miroslav S Petrov (4810_CR51) 2018; 79
J Brandts (4810_CR3) 2011; 56
P Amster (4810_CR28) 2006; 2006
TD Todorov (4810_CR52) 2018; 10
TD Todorov (4810_CR39) 2018; 76
C Nie (4810_CR31) 2013; 68
PC Hammer (4810_CR47) 1956; 10
L Jianyua (4810_CR6) 2003; 16
J Brandts (4810_CR5) 2009; 51
W Liu (4810_CR34) 2018; 100
H De Schepper (4810_CR32) 2000; 42
M Kumar (4810_CR42) 2013; 21
S Sajavičius (4810_CR33) 2014; 67
Z Wu (4810_CR41) 1995; 4
T Gudi (4810_CR26) 2012; 50
TD Todorov (4810_CR40) 2015; 69
P Grisvard (4810_CR17) 2011
TD Todorov (4810_CR50) 2013; 66
A Khosravifard (4810_CR46) 2010; 34
LP Aarts (4810_CR13) 2001; 14
SA Sanni (4810_CR27) 2014; 2014
Chein-Shan Liu (4810_CR44) 2010; 60
F Kanca (4810_CR29) 2016; 39
FJ Gaspar (4810_CR1) 2010
M Jung (4810_CR2) 2006; 56
A Demlow (4810_CR18) 2012; 50
Hyun-Gyu Kim (4810_CR38) 2009; 23
References_xml – volume: 58
  start-page: 1
  year: 2012
  end-page: 12
  ident: CR24
  article-title: On positive solutions for a class of nonlocal problems
  publication-title: Electron J Qual Theory Differ Equ
– volume: 42
  start-page: 518
  year: 2000
  end-page: 535
  ident: CR32
  article-title: Recovery of the boundary data for a linear second order elliptic problem with a nonlocal boundary condition
  publication-title: ANZIAM J
– volume: 292
  start-page: 720
  issue: 15
  year: 2016
  end-page: 731
  ident: CR22
  article-title: On the numerical solution of a nonlocal boundary value problem
  publication-title: J Comput Appl Math
– volume: 68
  start-page: 31
  year: 2013
  end-page: 38
  ident: CR31
  article-title: Some error estimates on the finite element approximation for two-dimensional elliptic problem with nonlocal boundary
  publication-title: Appl Numer Math
– volume: 80
  start-page: 1949
  issue: 276
  year: 2011
  end-page: 1978
  ident: CR16
  article-title: Finite element approximations in a non-Lipschitz domain: part II
  publication-title: Math Comput
– volume: 50
  start-page: 2159
  issue: 5
  year: 2012
  end-page: 2181
  ident: CR18
  article-title: Pointwise a posteriori error control for discontinuous Galerkin methods for elliptic problems
  publication-title: SIAM J Numer Anal
– volume: 39
  start-page: 3152
  issue: 11
  year: 2016
  end-page: 3158
  ident: CR29
  article-title: Inverse coefficient problem for a second-order elliptic equation with nonlocal boundary conditions
  publication-title: Math Methods Appl Sci
– ident: CR8
– volume: 72
  start-page: 2385
  issue: 10–12
  year: 2009
  end-page: 2391
  ident: CR14
  article-title: Solving differential equations with constructed neural networks
  publication-title: Neurocomputing
– volume: 21
  start-page: 334
  year: 2013
  end-page: 339
  ident: CR42
  article-title: Various Newton-type iterative methods for solving nonlinear equations
  publication-title: J Egypt Math Soc
– volume: 37
  start-page: 41
  year: 2010
  end-page: 69
  ident: CR48
  article-title: Analysis of the finite element method for transmission/mixed boundary value problems on general polygonal domains
  publication-title: Electron Trans Numer Anal
– volume: 10
  start-page: 130
  year: 1956
  end-page: 137
  ident: CR47
  article-title: Numerical integration over simplexes and cones
  publication-title: Math Tables Aids Comput
– volume: 23
  start-page: 2224
  year: 2009
  end-page: 2235
  ident: CR38
  article-title: An adaptive procedure based on combining finite elements with meshless methods
  publication-title: J Mech Sci Technol
– volume: 100
  start-page: 256
  year: 2018
  end-page: 264
  ident: CR34
  article-title: A modified approximate method based on Gaussian radial basis functions
  publication-title: Eng Anal Bound Elem
– volume: 2004
  start-page: 1
  issue: 19
  year: 2004
  end-page: 10
  ident: CR20
  article-title: Existence of solutions to nonlocal and singular elliptic problems via Galerkin method
  publication-title: Electron J Differ Equ
– volume: 26
  start-page: 765
  issue: 4
  year: 2015
  end-page: 773
  ident: CR36
  article-title: Artificial neural network method for solving the Navier–Stokes equations
  publication-title: Neural Comput Appl
– volume: 16
  start-page: 729
  year: 2003
  end-page: 734
  ident: CR6
  article-title: Numerical solution of elliptic partial differential equation using radial basis function neural networks
  publication-title: Neural Netw
– volume: 7
  start-page: 389
  issue: 2
  year: 1994
  end-page: 395
  ident: CR9
  article-title: Neural network representation of finite element method
  publication-title: Neural Netw
– volume: 66
  start-page: 1272
  issue: 7
  year: 2013
  end-page: 1283
  ident: CR50
  article-title: The optimal refinement strategies for 3-D simplicial meshes
  publication-title: Comput Math Appl
– volume: 60
  start-page: 1
  issue: 3
  year: 2014
  end-page: 21
  ident: CR43
  article-title: Spectral projected gradient methods: review and perspectives
  publication-title: J Stat Softw
– volume: 56
  start-page: 417
  year: 2011
  end-page: 424
  ident: CR3
  article-title: Generalization of the Zlamal condition for simplicial finite elements in
  publication-title: Appl Math
– volume: 19
  start-page: 1
  issue: 1
  year: 2002
  end-page: 12
  ident: CR21
  article-title: Numerical solution of a non-local boundary value problem with Neumann’s boundary conditions
  publication-title: Commun Numer Methods Eng
– volume: 10
  start-page: 71
  issue: 2
  year: 2018
  end-page: 74
  ident: CR52
  article-title: A second order problem with nonlocal boundary conditions
  publication-title: Sci Publ State Univ Novi Pazar Ser A Appl Math Inform Mech
– volume: 56
  start-page: 1570
  year: 2006
  end-page: 1583
  ident: CR2
  article-title: Isoparametric multigrid method for reaction–diffusion equations
  publication-title: Appl Numer Math
– volume: 2014
  start-page: 1
  issue: 124
  year: 2014
  end-page: 27
  ident: CR27
  article-title: Nonlocal degenerate reaction–diffusion equations with general nonlinear diffusion term
  publication-title: Electron J Differ Equ
– volume: 2
  start-page: 409
  year: 2010
  end-page: 417
  ident: CR23
  article-title: On a class of nonlocal elliptic problems with critical growth
  publication-title: Differ Equ Appl
– volume: 79
  start-page: 633
  issue: 2
  year: 2018
  end-page: 656
  ident: CR51
  article-title: Stable subdivision of 4D polytopes
  publication-title: Numer Algorithms
– volume: 36
  start-page: 2360
  year: 2012
  end-page: 2369
  ident: CR37
  article-title: Radial basis functions method for solving of a non-local boundary value problem with Neumann’s boundary conditions
  publication-title: Appl Math Model
– volume: 51
  start-page: 317
  issue: 2
  year: 2009
  end-page: 335
  ident: CR5
  article-title: On nonobtuse simplicial partitions
  publication-title: SIAM Rev
– volume: 67
  start-page: 1407
  year: 2014
  end-page: 1420
  ident: CR33
  article-title: Radial basis function method for a multidimensional linear elliptic equation with nonlocal boundary conditions
  publication-title: Comput Math Appl
– volume: 3
  start-page: 11
  issue: 1
  year: 2002
  end-page: 51
  ident: CR53
  article-title: The meshless local Petrov–Galerkin (MLPG) method: a simple & less-costly alternative to the finite element and boundary element methods
  publication-title: Comput Model Eng Sci
– volume: 16
  start-page: 729
  issue: 5–6
  year: 2003
  end-page: 734
  ident: CR12
  article-title: Numerical solution of elliptic partial differential equation using radial basis function neural networks
  publication-title: Neural Netw
– volume: 76
  start-page: 1261
  issue: 6
  year: 2018
  end-page: 1274
  ident: CR39
  article-title: Dirichlet problem for a nonlocal -Laplacian elliptic equation
  publication-title: Comput Math Appl
– volume: 40
  start-page: 1104
  year: 2009
  end-page: 1111
  ident: CR25
  article-title: Computational method for finding various solutions for a quasilinear elliptic equation of Kirchhoff type
  publication-title: Adv Eng Softw
– volume: 60
  start-page: 279
  issue: 3
  year: 2010
  end-page: 308
  ident: CR44
  article-title: Novel algorithms based on the conjugate gradient method for inverting ill-conditioned matrices, and a new regularization method to solve ill-posed linear systems
  publication-title: Comput Model Eng Sci
– volume: 45
  start-page: 277
  issue: 1
  year: 2007
  end-page: 295
  ident: CR15
  article-title: Finite element approximations in a non-Lipschitz domain
  publication-title: SIAM J Numer Anal
– start-page: 425
  year: 2011
  ident: CR17
  publication-title: Elliptic problems in nonsmooth domains
– volume: 13
  start-page: 2132
  year: 2008
  end-page: 2145
  ident: CR10
  article-title: Numerical solution of the nonlinear Schrödinger equation by feed forward neural networks
  publication-title: Commun Nonlinear Sci Numer Simul
– volume: 327
  start-page: 314
  year: 2018
  end-page: 324
  ident: CR11
  article-title: Error analysis of a meshless weak form method based on radial point interpolation technique for Sivashinsky equation arising in the alloy solidification problem
  publication-title: J Comput Appl Math
– volume: 227
  start-page: 212
  year: 2014
  end-page: 221
  ident: CR30
  article-title: A high order composite scheme for the second order elliptic problem with nonlocal boundary and its fast algorithm
  publication-title: Appl Math Comput
– year: 1991
  ident: CR45
  publication-title: Finite element analysis
– year: 2010
  ident: CR1
  article-title: Multigrid finite element method on semi-structured grids for the poroelasticity problem
  publication-title: Numerical mathematics and advanced applications
– volume: 4
  start-page: 283
  year: 1995
  end-page: 292
  ident: CR41
  article-title: Compactly supported positive definite radial functions
  publication-title: Adv Comput Math
– volume: 62
  start-page: 2143
  year: 2011
  end-page: 2161
  ident: CR35
  article-title: On the optimal shape parameter for Gaussian radial basis function finite difference approximation of the Poisson equation
  publication-title: Comput Math Appl
– volume: 2006
  start-page: 1
  year: 2006
  end-page: 11
  ident: CR28
  article-title: A nonlinear second order problem with a nonlocal boundary condition
  publication-title: Abstr Appl Anal
– volume: 42
  start-page: 47
  issue: 2
  year: 2005
  end-page: 69
  ident: CR49
  article-title: An optimal order numerical quadrature approximation of a planar isoparametric eigenvalue problem on triangular finite element meshes
  publication-title: Calcolo
– volume: 14
  start-page: 261
  year: 2001
  end-page: 271
  ident: CR13
  article-title: Neural network method for solving partial differential equations
  publication-title: Neural Process Lett
– volume: 31
  start-page: 1301
  issue: 12
  year: 2020
  end-page: 1317
  ident: CR19
  article-title: Results on nonlocal boundary value problems
  publication-title: Numer Funct AnalOptim
– ident: CR7
– volume: 52
  start-page: 251
  issue: 3
  year: 2007
  end-page: 265
  ident: CR4
  article-title: Simplicial finite elements in higher dimensions
  publication-title: Appl Math
– volume: 34
  start-page: 30
  year: 2010
  end-page: 40
  ident: CR46
  article-title: A new method for meshless integration in 2D and 3D Galerkin meshfree methods
  publication-title: Eng Anal Bound Elem
– volume: 50
  start-page: 657
  year: 2012
  end-page: 668
  ident: CR26
  article-title: Finite element method for a nonlocal problem of Kirchhoff type
  publication-title: SIAM J Numer Anal
– volume: 69
  start-page: 411
  issue: 5
  year: 2015
  end-page: 422
  ident: CR40
  article-title: Nonlocal problem for a general second-order elliptic operator
  publication-title: Comput Math Appl
– volume: 50
  start-page: 2159
  issue: 5
  year: 2012
  ident: 4810_CR18
  publication-title: SIAM J Numer Anal
  doi: 10.1137/110846397
– volume: 56
  start-page: 1570
  year: 2006
  ident: 4810_CR2
  publication-title: Appl Numer Math
  doi: 10.1016/j.apnum.2005.11.007
– volume: 3
  start-page: 11
  issue: 1
  year: 2002
  ident: 4810_CR53
  publication-title: Comput Model Eng Sci
– volume: 4
  start-page: 283
  year: 1995
  ident: 4810_CR41
  publication-title: Adv Comput Math
  doi: 10.1007/BF03177517
– volume: 13
  start-page: 2132
  year: 2008
  ident: 4810_CR10
  publication-title: Commun Nonlinear Sci Numer Simul
  doi: 10.1016/j.cnsns.2007.04.024
– volume: 327
  start-page: 314
  year: 2018
  ident: 4810_CR11
  publication-title: J Comput Appl Math
  doi: 10.1016/j.cam.2017.06.022
– volume: 40
  start-page: 1104
  year: 2009
  ident: 4810_CR25
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2009.06.003
– ident: 4810_CR7
– volume: 19
  start-page: 1
  issue: 1
  year: 2002
  ident: 4810_CR21
  publication-title: Commun Numer Methods Eng
  doi: 10.1002/cnm.522
– volume: 76
  start-page: 1261
  issue: 6
  year: 2018
  ident: 4810_CR39
  publication-title: Comput Math Appl
  doi: 10.1016/j.camwa.2018.06.019
– volume: 58
  start-page: 1
  year: 2012
  ident: 4810_CR24
  publication-title: Electron J Qual Theory Differ Equ
  doi: 10.14232/ejqtde.2012.1.58
– volume: 42
  start-page: 518
  year: 2000
  ident: 4810_CR32
  publication-title: ANZIAM J
  doi: 10.21914/anziamj.v42i0.611
– volume: 10
  start-page: 130
  year: 1956
  ident: 4810_CR47
  publication-title: Math Tables Aids Comput
  doi: 10.2307/2002483
– volume: 60
  start-page: 279
  issue: 3
  year: 2010
  ident: 4810_CR44
  publication-title: Comput Model Eng Sci
– volume: 72
  start-page: 2385
  issue: 10–12
  year: 2009
  ident: 4810_CR14
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2008.12.004
– volume-title: Finite element analysis
  year: 1991
  ident: 4810_CR45
– volume: 292
  start-page: 720
  issue: 15
  year: 2016
  ident: 4810_CR22
  publication-title: J Comput Appl Math
  doi: 10.1016/j.cam.2015.02.048
– volume: 2014
  start-page: 1
  issue: 124
  year: 2014
  ident: 4810_CR27
  publication-title: Electron J Differ Equ
– volume: 66
  start-page: 1272
  issue: 7
  year: 2013
  ident: 4810_CR50
  publication-title: Comput Math Appl
  doi: 10.1016/j.camwa.2013.07.026
– volume: 45
  start-page: 277
  issue: 1
  year: 2007
  ident: 4810_CR15
  publication-title: SIAM J Numer Anal
  doi: 10.1137/050647797
– volume: 2006
  start-page: 1
  year: 2006
  ident: 4810_CR28
  publication-title: Abstr Appl Anal
– volume: 68
  start-page: 31
  year: 2013
  ident: 4810_CR31
  publication-title: Appl Numer Math
  doi: 10.1016/j.apnum.2013.01.005
– volume: 51
  start-page: 317
  issue: 2
  year: 2009
  ident: 4810_CR5
  publication-title: SIAM Rev
  doi: 10.1137/060669073
– volume: 37
  start-page: 41
  year: 2010
  ident: 4810_CR48
  publication-title: Electron Trans Numer Anal
– volume: 14
  start-page: 261
  year: 2001
  ident: 4810_CR13
  publication-title: Neural Process Lett
  doi: 10.1023/A:1012784129883
– volume: 31
  start-page: 1301
  issue: 12
  year: 2020
  ident: 4810_CR19
  publication-title: Numer Funct AnalOptim
  doi: 10.1080/01630563.2010.519136
– volume: 39
  start-page: 3152
  issue: 11
  year: 2016
  ident: 4810_CR29
  publication-title: Math Methods Appl Sci
  doi: 10.1002/mma.3759
– volume: 34
  start-page: 30
  year: 2010
  ident: 4810_CR46
  publication-title: Eng Anal Bound Elem
  doi: 10.1016/j.enganabound.2009.07.008
– start-page: 425
  volume-title: Elliptic problems in nonsmooth domains
  year: 2011
  ident: 4810_CR17
  doi: 10.1137/1.9781611972030
– volume: 69
  start-page: 411
  issue: 5
  year: 2015
  ident: 4810_CR40
  publication-title: Comput Math Appl
  doi: 10.1016/j.camwa.2014.12.014
– volume: 36
  start-page: 2360
  year: 2012
  ident: 4810_CR37
  publication-title: Appl Math Model
  doi: 10.1016/j.apm.2011.08.032
– volume: 100
  start-page: 256
  year: 2018
  ident: 4810_CR34
  publication-title: Eng Anal Bound Elem
  doi: 10.1016/j.enganabound.2018.05.012
– volume: 7
  start-page: 389
  issue: 2
  year: 1994
  ident: 4810_CR9
  publication-title: Neural Netw
  doi: 10.1016/0893-6080(94)90031-0
– volume: 23
  start-page: 2224
  year: 2009
  ident: 4810_CR38
  publication-title: J Mech Sci Technol
  doi: 10.1007/s12206-009-0510-5
– volume: 67
  start-page: 1407
  year: 2014
  ident: 4810_CR33
  publication-title: Comput Math Appl
  doi: 10.1016/j.camwa.2014.01.014
– volume: 227
  start-page: 212
  year: 2014
  ident: 4810_CR30
  publication-title: Appl Math Comput
– volume: 16
  start-page: 729
  issue: 5–6
  year: 2003
  ident: 4810_CR12
  publication-title: Neural Netw
  doi: 10.1016/S0893-6080(03)00083-2
– volume: 56
  start-page: 417
  year: 2011
  ident: 4810_CR3
  publication-title: Appl Math
  doi: 10.1007/s10492-011-0024-1
– volume-title: Numerical mathematics and advanced applications
  year: 2010
  ident: 4810_CR1
– volume: 10
  start-page: 71
  issue: 2
  year: 2018
  ident: 4810_CR52
  publication-title: Sci Publ State Univ Novi Pazar Ser A Appl Math Inform Mech
  doi: 10.5937/SPSUNP1802071T
– volume: 16
  start-page: 729
  year: 2003
  ident: 4810_CR6
  publication-title: Neural Netw
  doi: 10.1016/S0893-6080(03)00083-2
– volume: 60
  start-page: 1
  issue: 3
  year: 2014
  ident: 4810_CR43
  publication-title: J Stat Softw
  doi: 10.18637/jss.v060.i03
– volume: 2
  start-page: 409
  year: 2010
  ident: 4810_CR23
  publication-title: Differ Equ Appl
– volume: 80
  start-page: 1949
  issue: 276
  year: 2011
  ident: 4810_CR16
  publication-title: Math Comput
  doi: 10.1090/S0025-5718-2011-02481-6
– volume: 52
  start-page: 251
  issue: 3
  year: 2007
  ident: 4810_CR4
  publication-title: Appl Math
  doi: 10.1007/s10492-007-0013-6
– volume: 21
  start-page: 334
  year: 2013
  ident: 4810_CR42
  publication-title: J Egypt Math Soc
  doi: 10.1016/j.joems.2013.03.001
– volume: 62
  start-page: 2143
  year: 2011
  ident: 4810_CR35
  publication-title: Comput Math Appl
  doi: 10.1016/j.camwa.2011.06.037
– volume: 42
  start-page: 47
  issue: 2
  year: 2005
  ident: 4810_CR49
  publication-title: Calcolo
  doi: 10.1007/s10092-005-0097-x
– volume: 2004
  start-page: 1
  issue: 19
  year: 2004
  ident: 4810_CR20
  publication-title: Electron J Differ Equ
– ident: 4810_CR8
  doi: 10.1109/ICPR.2000.906151
– volume: 26
  start-page: 765
  issue: 4
  year: 2015
  ident: 4810_CR36
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-014-1762-2
– volume: 79
  start-page: 633
  issue: 2
  year: 2018
  ident: 4810_CR51
  publication-title: Numer Algorithms
  doi: 10.1007/s11075-017-0454-2
– volume: 50
  start-page: 657
  year: 2012
  ident: 4810_CR26
  publication-title: SIAM J Numer Anal
  doi: 10.1137/110822931
SSID ssj0004685
Score 2.288894
Snippet This paper proposes a radial basis function (RBF) network-based method for solving a nonlinear second-order elliptic equation with Dirichlet boundary...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 14153
SubjectTerms Artificial Intelligence
Boundary conditions
Boundary value problems
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Data Mining and Knowledge Discovery
Differential equations
Dirichlet problem
Divergence
Finite element method
Image Processing and Computer Vision
Learning
Mathematical analysis
Methods
Neural networks
Numerical integration
Original Article
Probability and Statistics in Computer Science
Radial basis function
Variational methods
SummonAdditionalLinks – databaseName: Springer Journals
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB509eDF9Ymrq-TgTQPddtImR_GBB1kEH-ytpGkKglTZroL_3kk23VVRQc-dpmUemZlk5huAw0TaVJYp8kiYiGOBJVfKJLwUGNsYU4ysh8y_yoZDORqp69AU1rTV7u2VpN-pZ81u7gSTUt_YlSNKd4W7CEvCoc24HP3m_kM3pB_ESXmLq-nBJLTKfL_GZ3c0jzG_XIt6b3PR_d9_rsFqiC7ZyVQd1mHB1hvQbSc3sGDIm3DmMDmIsJ4WgbMWWZxRCMtIG90pA6ufau_pWOFHL43fmEMGtyzMoGm24O7i_Pb0kod5CtyQoU241uTcU2HJ6asysSZDLWSpCtRkhpQKi6iSJi0pZXI4YOS5UNuqUlJLkdosqpJt6NCn7Q4w19Az0FjEVhcoTKaMpECIor0k01VUFj0YtGzNTQAbdzMvHvMZTLJnU05syj2b8qgHR7N3nqdQG79S91tp5cHsmjzGBB0kWoY9OG6lM3_882q7fyPfg5XYC9jVmvWhMxm_2H1YNq-Th2Z84NXxHTyQ1jY
  priority: 102
  providerName: Springer Nature
Title Neural network approach for solving nonlocal boundary value problems
URI https://link.springer.com/article/10.1007/s00521-020-04810-0
https://www.proquest.com/docview/2434612174
Volume 32
WOSCitedRecordID wos000560557000069&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: P5Z
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Proquest Central
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: BENPR
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer Journals
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZg48CF8RSDMeXADSpKm7bpCfHYxAFN03ho4lKlaSohoW6sA4l_j52lGyCxC5ce2vSh2o4dx_4-gGNf6FBkIXfcQLkOT3nmxLHynSzgnvZ4yF1tIPPvol5PDIdx3ybcSltWWc2JZqLORopy5Gce9zmhXUX8YvzmEGsU7a5aCo1VqBNKAlE39IPnb32RhpITVzBU3cN92zRjWucoH4pnPSpuFLQh_NMxLaLNXxukxu90G__94k3YsBEnu5ypyBas6GIbGhWbA7PGvQM3hNOBA4tZYTir0MYZhrUMNZQyD6wYFcb7sdTQMU0-GaGFa2Z5acpdeOx2Hq5vHcux4Cg0vqkjJTr8MNAYCMSZr1XEZSCyOOUSTROXx4GbCxVmuIwibDD0ZlzqPI-FFEGoIzf396CGr9b7wKjJ51zy1NMy5YGKYiUwOMII0I9k7mZpE86rH5woC0BOPBivyRw62QglQaEkRiiJ24ST-T3jGfzG0tGtShKJNcUyWYihCaeVLBeX_37awfKnHcK6Z9SH6s1aUJtO3vURrKmP6Us5aUP9qtPrD9pGIfE4uH_6AhQp4yo
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LS8NAEB5qK-jFt1ife9CTBtNkk2wOIj4qLa2lSAVvcbPZgCCttlXxT_kbndkmrQr25sFrHpvHfDuP3ZlvAPZdoX2R-NyyPWVbPOaJFYbKtRKPO9rhPre1ocxvBq2WuLsL2wX4yGthKK0y14lGUSc9RWvkxw53ObFdBfz06dmirlG0u5q30BjBoqHf3zBkG5zUL1G-B45zVe1c1Kysq4ClEG5DS0o0cb6n0fSFiatVwKUnkjDmEsGIAaFnp0L5CQYOxIaF-ptLnaahkMLzdWCnLo47AyV6Ha8IpfNqq33zpRLTNAHFmInyibiblemYYj1agcWjDqVTCtqC_m4KJ_7tjy1ZY-muFv_bP1qChcynZmejSbAMBd1dgcW8XwXL1NcqXBITCV7YHaW-s5xPnaHjznAO0toK6_a6xr6z2DSc6r8z4kPXLOu8M1iD2z_5lnUo4qP1BjAqY6pIHjtaxtxTQagEun_o47qBTO0kLkMlF2ikMop16vTxGI3JoQ0IIgRBZEAQ2WU4HN_zNCIYmXr1di75KFM2g2gi9jIc5diZnP59tM3po-3BXK1z3Yya9VZjC-YdA13KrtuG4rD_ondgVr0OHwb93WwaMLj_a1R9AtJUPHc
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8NADA86RXxxfuJ06j34psWuTdvroziH4hjDL_ZWrndXEKSOrQr-9-Zu7TZFBfG56bXkgySX5BeAY5_rkKsQHTeQroMpKieOpe-oAD3tYYiutpD53ajX44NB3J-b4rfd7lVJcjLTYFCa8uJsqLKz6eCbuc2kNNgzrYnclHMXYQkpkzFNXbd3j3OTkXYpJ-Uwpr8H_XJs5vszPrumWbz5pURqPU-n_v9_Xoe1Mupk5xM12YAFnW9CvdrowEoD34K2weogwnzSHM4qxHFGoS0jLTW3Dyx_ya0HZKldyTR6ZwYxXLNyN814Gx46l_cXV065Z8GRZICFIwQ5_TDQFAzEytcyQhFwFacoyDwpRQ7cjMtQUSpl8MHIo6HQWRZzwYNQR27m70CNPq13gZlBn5bA1NMixUBGseQUIFEU6Ecic1XagFbF4kSWIORmF8ZzMoVPtmxKiE2JZVPiNuBk-s5wAsHxK3WzklxSmuM48dBHA5UWYQNOK0nNHv982t7fyI9gpd_uJN3r3s0-rHpW1qYdrQm1YvSqD2BZvhVP49Gh1dIPQ0Dh_g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neural+network+approach+for+solving+nonlocal+boundary+value+problems&rft.jtitle=Neural+computing+%26+applications&rft.au=Palade%2C+V&rft.au=Petrov%2C+M+S&rft.au=Todorov%2C+T+D&rft.date=2020-09-01&rft.pub=Springer+Nature+B.V&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=32&rft.issue=17&rft.spage=14153&rft.epage=14171&rft_id=info:doi/10.1007%2Fs00521-020-04810-0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon