Neural network approach for solving nonlocal boundary value problems
This paper proposes a radial basis function (RBF) network-based method for solving a nonlinear second-order elliptic equation with Dirichlet boundary conditions. The nonlocal term involved in the differential equation needs a completely different approach from the up-to-now-known methods for solving...
Uloženo v:
| Vydáno v: | Neural computing & applications Ročník 32; číslo 17; s. 14153 - 14171 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
London
Springer London
01.09.2020
Springer Nature B.V |
| Témata: | |
| ISSN: | 0941-0643, 1433-3058 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | This paper proposes a radial basis function (RBF) network-based method for solving a nonlinear second-order elliptic equation with Dirichlet boundary conditions. The nonlocal term involved in the differential equation needs a completely different approach from the up-to-now-known methods for solving boundary value problems by using neural networks. A numerical integration procedure is developed for computing the local
L
2
-inner product. It is known that the non-variational methods are not effective in solving nonlocal problems. In this paper, the weak formulation of the nonlocal problem is reduced to the minimization of a nonlinear functional. Unlike many previous works, we use an integral objective functional for implementing the learning procedure. Well-distributed nodes are used as the centers of the RBF neural network. The weights of the RBF network are determined by a two-point step size gradient method. The neural network method proposed in this paper is an alternative to the finite-element method (FEM) for solving nonlocal boundary value problems in non-Lipschitz domains. A new variable learning rate strategy has been developed and implemented in order to avoid the divergence of the training process. A comparison between the proposed neural network approach and the FEM is illustrated by challenging examples, and the performance of both methods is thoroughly analyzed. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0941-0643 1433-3058 |
| DOI: | 10.1007/s00521-020-04810-0 |