Neural network approach for solving nonlocal boundary value problems

This paper proposes a radial basis function (RBF) network-based method for solving a nonlinear second-order elliptic equation with Dirichlet boundary conditions. The nonlocal term involved in the differential equation needs a completely different approach from the up-to-now-known methods for solving...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Neural computing & applications Ročník 32; číslo 17; s. 14153 - 14171
Hlavní autoři: Palade, V., Petrov, M. S., Todorov, T. D.
Médium: Journal Article
Jazyk:angličtina
Vydáno: London Springer London 01.09.2020
Springer Nature B.V
Témata:
ISSN:0941-0643, 1433-3058
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper proposes a radial basis function (RBF) network-based method for solving a nonlinear second-order elliptic equation with Dirichlet boundary conditions. The nonlocal term involved in the differential equation needs a completely different approach from the up-to-now-known methods for solving boundary value problems by using neural networks. A numerical integration procedure is developed for computing the local L 2 -inner product. It is known that the non-variational methods are not effective in solving nonlocal problems. In this paper, the weak formulation of the nonlocal problem is reduced to the minimization of a nonlinear functional. Unlike many previous works, we use an integral objective functional for implementing the learning procedure. Well-distributed nodes are used as the centers of the RBF neural network. The weights of the RBF network are determined by a two-point step size gradient method. The neural network method proposed in this paper is an alternative to the finite-element method (FEM) for solving nonlocal boundary value problems in non-Lipschitz domains. A new variable learning rate strategy has been developed and implemented in order to avoid the divergence of the training process. A comparison between the proposed neural network approach and the FEM is illustrated by challenging examples, and the performance of both methods is thoroughly analyzed.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0941-0643
1433-3058
DOI:10.1007/s00521-020-04810-0