Estimating Renyi Entropy of Discrete Distributions

It was shown recently that estimating the Shannon entropy H(p) of a discrete k-symbol distribution p requires Θ(k/log k) samples, a number that grows near-linearly in the support size. In many applications, H(p) can be replaced by the more general Rényi entropy of order α and H α (p). We determine...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on information theory Ročník 63; číslo 1; s. 38 - 56
Hlavní autori: Acharya, Jayadev, Orlitsky, Alon, Suresh, Ananda Theertha, Tyagi, Himanshu
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 01.01.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:0018-9448, 1557-9654
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract It was shown recently that estimating the Shannon entropy H(p) of a discrete k-symbol distribution p requires Θ(k/log k) samples, a number that grows near-linearly in the support size. In many applications, H(p) can be replaced by the more general Rényi entropy of order α and H α (p). We determine the number of samples needed to estimate H α (p) for all α, showing that α <; 1 requires a super-linear, roughly k 1/α samples, noninteger α > 1 requires a near-linear k samples, but, perhaps surprisingly, integer α > 1 requires only Θ(k 1-1/α ) samples. Furthermore, developing on a recently established connection between polynomial approximation and estimation of additive functions of the form Σ x f (p x ), we reduce the sample complexity for noninteger values of α by a factor of log k compared with the empirical estimator. The estimators achieving these bounds are simple and run in time linear in the number of samples. Our lower bounds provide explicit constructions of distributions with different Rényi entropies that are hard to distinguish.
AbstractList It was shown recently that estimating the Shannon entropy H(p) of a discrete k-symbol distribution p requires Θ(k/log k) samples, a number that grows near-linearly in the support size. In many applications, H(p) can be replaced by the more general Rényi entropy of order α and H α (p). We determine the number of samples needed to estimate H α (p) for all α, showing that α <; 1 requires a super-linear, roughly k 1/α samples, noninteger α > 1 requires a near-linear k samples, but, perhaps surprisingly, integer α > 1 requires only Θ(k 1-1/α ) samples. Furthermore, developing on a recently established connection between polynomial approximation and estimation of additive functions of the form Σ x f (p x ), we reduce the sample complexity for noninteger values of α by a factor of log k compared with the empirical estimator. The estimators achieving these bounds are simple and run in time linear in the number of samples. Our lower bounds provide explicit constructions of distributions with different Rényi entropies that are hard to distinguish.
It was shown recently that estimating the Shannon entropy H(p) of a discrete k-symbol distribution p requires Θ(k/log k) samples, a number that grows near-linearly in the support size. In many applications, H(p) can be replaced by the more general Rényi entropy of order α and Hα(p). We determine the number of samples needed to estimate Hα(p) for all α, showing that α <; 1 requires a super-linear, roughly k1/α samples, noninteger α > 1 requires a near-linear k samples, but, perhaps surprisingly, integer α > 1 requires only Θ(k1-1/α) samples. Furthermore, developing on a recently established connection between polynomial approximation and estimation of additive functions of the form Σx f (px), we reduce the sample complexity for noninteger values of α by a factor of log k compared with the empirical estimator. The estimators achieving these bounds are simple and run in time linear in the number of samples. Our lower bounds provide explicit constructions of distributions with different Rényi entropies that are hard to distinguish.
It was shown recently that estimating the Shannon entropy H(p) of a discrete k -symbol distribution p requires ...(k/logk) samples, a number that grows near-linearly in the support size. In many applications, H(p) can be replaced by the more general R...nyi entropy of order a and Ha(p) . We determine the number of samples needed to estimate Ha(p) for all a , showing that a<1 requires a super-linear, roughly k... samples, noninteger a>1 requires a near-linear k samples, but, perhaps surprisingly, integer a>1 requires only ...(...) samples. Furthermore, developing on a recently established connection between polynomial approximation and estimation of additive functions of the form ...f(px) , we reduce the sample complexity for noninteger values of a by a factor of logk compared with the empirical estimator. The estimators achieving these bounds are simple and run in time linear in the number of samples. Our lower bounds provide explicit constructions of distributions with different Renyi entropies that are hard to distinguish. (ProQuest: ... denotes formulae/symbols omitted.)
Author Suresh, Ananda Theertha
Tyagi, Himanshu
Acharya, Jayadev
Orlitsky, Alon
Author_xml – sequence: 1
  givenname: Jayadev
  surname: Acharya
  fullname: Acharya, Jayadev
  email: acharya@cornell.edu
  organization: Sch. of Electr. & Comput. Eng., Cornell Univ., Ithaca, NY, USA
– sequence: 2
  givenname: Alon
  surname: Orlitsky
  fullname: Orlitsky, Alon
  organization: Dept. of Electr. & Comput. Eng., Univ. of California, San Diego, La Jolla, CA, USA
– sequence: 3
  givenname: Ananda Theertha
  surname: Suresh
  fullname: Suresh, Ananda Theertha
  email: theertha@google.com
  organization: Google Res., New York, NY, USA
– sequence: 4
  givenname: Himanshu
  surname: Tyagi
  fullname: Tyagi, Himanshu
  email: htyagi@ece.iisc.ernet.in
  organization: Dept. of Electr. Commun. Eng., Indian Inst. of Sci., Bangalore, India
BookMark eNp9kEtLAzEUhYNUsK3uBTcDrqfm_VhKbbVQEKSuwzRNJKUmNUkX_fdmaHHhoqt7D5xzH98IDEIMFoB7BCcIQfW0WqwmGCI-wRxDStgVGCLGRKs4owMwhBDJVlEqb8Ao522VlCE8BHiWi__uig9fzYcNR9_MQklxf2yia158NskW2zcl-fWh-BjyLbh23S7bu3Mdg8_5bDV9a5fvr4vp87I1BKnSdpIwYq1khAvlZFUCbYiU9VruoDFqbSjFlhIoN4RT5gQzzigGITOcc0vG4PE0d5_iz8HmorfxkEJdqTESlGAuqLrkQnW3wFhW7xjwk8ukmHOyThtfuv6dkjq_0wjqnqKuFHVPUZ8p1iD8F9ynyisdL0UeThFvrf2zC064qhR-AZULfAI
CODEN IETTAW
CitedBy_id crossref_primary_10_1109_TIT_2024_3440661
crossref_primary_10_1109_TIT_2024_3382037
crossref_primary_10_1016_j_eswa_2021_114748
crossref_primary_10_1016_j_peva_2023_102379
crossref_primary_10_1016_j_peva_2021_102247
crossref_primary_10_1007_s11042_018_6823_6
crossref_primary_10_1103_PhysRevA_108_012409
crossref_primary_10_3390_e25020185
crossref_primary_10_1007_s00034_020_01349_2
crossref_primary_10_1007_s40687_024_00483_6
crossref_primary_10_1080_00949655_2023_2298862
crossref_primary_10_1109_TIT_2019_2900048
crossref_primary_10_1109_TIT_2018_2883306
crossref_primary_10_4018_IJMCMC_2017070107
crossref_primary_10_3390_math11102298
crossref_primary_10_1109_TIT_2017_2733537
crossref_primary_10_1109_TIT_2018_2846245
crossref_primary_10_1007_s11135_022_01451_4
Cites_doi 10.1109/TIT.2004.833360
10.1002/ima.20079
10.1109/SFCS.1989.63486
10.1103/PhysRevE.69.056111
10.1109/FOCS.2008.76
10.1145/2432622.2432626
10.1145/1993636.1993727
10.1109/ISIT.1994.394764
10.1109/TIT.2008.928987
10.1109/TIT.2004.836665
10.1109/TIT.2013.2270273
10.1145/1374376.1374432
10.1109/TIT.2015.2412945
10.1145/1140103.1140295
10.1109/18.370121
10.1145/380752.380810
10.1162/089976603321780272
10.1109/TIT.2010.2090221
10.1214/aop/1176995801
10.1109/18.481781
10.1109/18.476316
10.1016/0375-9601(88)90193-4
10.1137/1.9781611973730.124
10.1002/rsa.10019
10.1007/978-1-4419-1570-2_2
10.1109/ICIP.2000.901000
10.1007/PL00003816
10.1109/18.42194
10.1007/978-1-4612-1880-7_29
10.1002/prot.340110408
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 2017
Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 2017
– notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TIT.2016.2620435
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1557-9654
EndPage 56
ExternalDocumentID 4288742571
10_1109_TIT_2016_2620435
7636988
Genre orig-research
Feature
GrantInformation_xml – fundername: MITEI-Shell Grant
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACGOD
ACIWK
AENEX
AETEA
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
VJK
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c319t-a8353ee853679f883571d3881106f0cc9bc442e4308d3645f75cfc95005c666e3
IEDL.DBID RIE
ISICitedReferencesCount 49
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000391740000003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9448
IngestDate Sun Nov 09 07:47:30 EST 2025
Sun Nov 09 07:58:33 EST 2025
Sat Nov 29 03:31:37 EST 2025
Tue Nov 18 21:18:39 EST 2025
Tue Aug 26 16:43:24 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-a8353ee853679f883571d3881106f0cc9bc442e4308d3645f75cfc95005c666e3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
ORCID 0000-0003-2950-706X
PQID 1853722874
PQPubID 36024
PageCount 19
ParticipantIDs crossref_citationtrail_10_1109_TIT_2016_2620435
proquest_journals_2174326749
crossref_primary_10_1109_TIT_2016_2620435
proquest_journals_1853722874
ieee_primary_7636988
PublicationCentury 2000
PublicationDate 2017-Jan.
2017-1-00
20170101
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – month: 01
  year: 2017
  text: 2017-Jan.
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on information theory
PublicationTitleAbbrev TIT
PublicationYear 2017
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
knuth (ref19) 1973; 3
ref34
ref12
jenssen (ref15) 2003
markov (ref23) 1892
ref37
ref14
rényi (ref36) 1961; 1
ref30
ref33
ref32
ref10
hardy (ref11) 1952
ref2
xu (ref44) 1998
ref38
ref16
orlitsky (ref31) 2004
acharya (ref1) 2015
tossavainen (ref40) 2006; 33
miller (ref25) 1955; 2
wu (ref43) 2014
ref46
ref24
ref45
ref26
ref20
ref42
ref41
ref21
ref28
ref27
ref29
timan (ref39) 1963
ref7
ili? (ref13) 0
källberg (ref18) 0
ref9
jiao (ref17) 0
ref4
ref3
mansour (ref22) 2012
ref6
ref5
goldreich (ref8) 2000; 7
References_xml – ident: ref33
  doi: 10.1109/TIT.2004.833360
– volume: 1
  start-page: 547
  year: 1961
  ident: ref36
  article-title: On measures of entropy and information
  publication-title: Proc 4th Berkeley Symp Math Statist Probab
– ident: ref28
  doi: 10.1002/ima.20079
– ident: ref14
  doi: 10.1109/SFCS.1989.63486
– ident: ref29
  doi: 10.1103/PhysRevE.69.056111
– ident: ref12
  doi: 10.1109/FOCS.2008.76
– year: 0
  ident: ref13
  article-title: A unified characterization of generalized information and certainty measures
– start-page: 426
  year: 2004
  ident: ref31
  article-title: On modeling profiles instead of values
  publication-title: Proc 20th Conf Uncertainty Artif Intell
– start-page: 523
  year: 2003
  ident: ref15
  article-title: Clustering using Renyi's entropy
  publication-title: Proc Int Joint Conf Neural Netw
– ident: ref5
  doi: 10.1145/2432622.2432626
– ident: ref41
  doi: 10.1145/1993636.1993727
– volume: 33
  start-page: 47
  year: 2006
  ident: ref40
  article-title: On the zeros of finite sums of exponential functions
  publication-title: Australian Mathematical Society Gazette
– ident: ref24
  doi: 10.1109/ISIT.1994.394764
– year: 2014
  ident: ref43
  article-title: Minimax rates of entropy estimation on large alphabets via best polynomial approximation
  publication-title: CoRR
– year: 0
  ident: ref18
  article-title: Statistical inference for Rényi entropy functionals
– ident: ref34
  doi: 10.1109/TIT.2008.928987
– volume: 2
  start-page: 95
  year: 1955
  ident: ref25
  article-title: Note on the bias of information estimates
  publication-title: Proc Inf Theory Psychol Problems Methods
– ident: ref35
  doi: 10.1109/TIT.2004.836665
– ident: ref27
  doi: 10.1109/TIT.2013.2270273
– volume: 7
  start-page: 20
  year: 2000
  ident: ref8
  article-title: On testing expansion in bounded-degree graphs
  publication-title: Proc Electron Colloq Comput Complex (ECCC)
– ident: ref42
  doi: 10.1145/1374376.1374432
– year: 1963
  ident: ref39
  publication-title: Theory of Approximation of Functions of a Real Variable
– year: 1952
  ident: ref11
  publication-title: Inequalities
– ident: ref16
  doi: 10.1109/TIT.2015.2412945
– start-page: 218
  year: 1892
  ident: ref23
  article-title: On functions deviating least from zero in a given interval
  publication-title: Proc Izdat Imp Akad Nauk
– ident: ref20
  doi: 10.1145/1140103.1140295
– ident: ref7
  doi: 10.1109/18.370121
– ident: ref4
  doi: 10.1145/380752.380810
– year: 1998
  ident: ref44
  article-title: Energy, entropy and information potential for neural computation
– ident: ref32
  doi: 10.1162/089976603321780272
– ident: ref10
  doi: 10.1109/TIT.2010.2090221
– year: 0
  ident: ref17
  article-title: Maximum likelihood estimation of functionals of discrete distributions
– ident: ref38
  doi: 10.1214/aop/1176995801
– ident: ref3
  doi: 10.1109/18.481781
– ident: ref6
  doi: 10.1109/18.476316
– volume: 3
  year: 1973
  ident: ref19
  publication-title: The Art of Computer Programming Sorting and Searching
– ident: ref9
  doi: 10.1016/0375-9601(88)90193-4
– start-page: 1855
  year: 2015
  ident: ref1
  article-title: The complexity of estimating Rényi entropy
  publication-title: Proc Annu ACM-SIAM Symp Discrete Algorithms (SODA)
  doi: 10.1137/1.9781611973730.124
– ident: ref2
  doi: 10.1002/rsa.10019
– ident: ref45
  doi: 10.1007/978-1-4419-1570-2_2
– ident: ref21
  doi: 10.1109/ICIP.2000.901000
– ident: ref30
  doi: 10.1007/PL00003816
– ident: ref26
  doi: 10.1109/18.42194
– ident: ref46
  doi: 10.1007/978-1-4612-1880-7_29
– ident: ref37
  doi: 10.1002/prot.340110408
– year: 2012
  ident: ref22
  article-title: Multiple source adaptation and the Rényi divergence
  publication-title: CoRR
SSID ssj0014512
Score 2.5034225
Snippet It was shown recently that estimating the Shannon entropy H(p) of a discrete k-symbol distribution p requires Θ(k/log k) samples, a number that grows...
It was shown recently that estimating the Shannon entropy H(p) of a discrete k -symbol distribution p requires ...(k/logk) samples, a number that grows...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 38
SubjectTerms Additives
Approximation
Complexity theory
Electronic mail
Entropy
Entropy (Information theory)
Entropy estimation
Estimating techniques
Estimation
Functions (mathematics)
Genetics
Lower bounds
Mathematical analysis
minimax lower bounds
Polynomials
sample complexity
sublinear algorithms
Upper bound
Title Estimating Renyi Entropy of Discrete Distributions
URI https://ieeexplore.ieee.org/document/7636988
https://www.proquest.com/docview/1853722874
https://www.proquest.com/docview/2174326749
Volume 63
WOSCitedRecordID wos000391740000003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 1557-9654
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014512
  issn: 0018-9448
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8NAEB3a4kEPVlvFapUcvAimTTZpdvco2qKXIlKht5BOJlKQtPRD6L93dptGQRG8JWTzwWzezpud3XkA14RBhknIQU6SCJf5f-Jq4ihFEDIdSQNBKrNiE3I4VOOxfq7AbbkXhojs4jPqmEOby09nuDZTZV3GQqSVqkJVSrndq1VmDMKev60M7jOA-Z27lKSnu6OnkVnDFXVs8XUr7Pblgqymyo-B2HqXQf1_33UEhwWLdO623X4MFcobUN8pNDgFYBtw8K3cYBNEn_FsGGr-5rxQvpk6fbNOfb5xZpnzMOUBhBm0OShVsJYn8Droj-4f3UIzwUUG08pNmFEFROyEI6kzxWfSTwOl2BBR5iHqCYahoDDwVGoykJnsYYa6x2BEjmQoOIVaPsvpDBxfYc_s4vEFcswhSJPyEpykofImmmlMC7o7M8ZYFBQ3uhbvsQ0sPB2z4WNj-LgwfAtuyjvm22Iaf7RtGkOX7Qobt6C966m4QNsyNpxDClO5_9fLNuoSkQz1-e8PvYB9Yby1nVlpQ221WNMl7OHHarpcXNn_7BP5xc1a
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60CurBaqtYrZqDF8G0yea1exRtabEWkQq9hXQzkYKkpQ-h_97ZTRoFi-AtIZsH3-bb-WZndwbgBqWTyMglJyeKmEn6PzIFkpfCUJIciR2GPNHFJoJ-nw-H4mUL7oq9MIioF59hQx3qWH48kUs1VdYkLviC823Y8VyX2dlurSJm4Hp2lhvcJgrTW9dBSUs0B92BWsXlN3T6dV3a7dsI6aoqv4ZibV_a5f992REc5jrSuM86_hi2MK1AeV2jwcgpW4GDHwkHq8BaxGilUdN34xXT1dhoqZXq05UxSYzHMQ0hpKHVQVEHa34Cb-3W4KFj5lUTTEl0WpgRaSoHkcywH4iE01lgxw7nBISfWFKKkSTw0HUsHqsYZBJ4MpHCIzpK8mXQOYVSOknxDAybS0_t47GZJK-DoUBuRXIUu9waCRIyNWiuYQxlnlJcVbb4CLVrYYmQgA8V8GEOfA1uizumWTqNP9pWFdBFuxzjGtTXPRXmfJuHSnUETOXu33hZ-13MD1xxvvmh17DXGTz3wl63_3QB-0zZbj3PUofSYrbES9iVn4vxfHal_7kv1Z7QoQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimating+Renyi+Entropy+of+Discrete+Distributions&rft.jtitle=IEEE+transactions+on+information+theory&rft.au=Acharya%2C+Jayadev&rft.au=Orlitsky%2C+Alon&rft.au=Suresh%2C+Ananda+Theertha&rft.au=Tyagi%2C+Himanshu&rft.date=2017-01-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-9448&rft.eissn=1557-9654&rft.volume=63&rft.issue=1&rft.spage=38&rft_id=info:doi/10.1109%2FTIT.2016.2620435&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=4288742571
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9448&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9448&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9448&client=summon