Estimating Renyi Entropy of Discrete Distributions
It was shown recently that estimating the Shannon entropy H(p) of a discrete k-symbol distribution p requires Θ(k/log k) samples, a number that grows near-linearly in the support size. In many applications, H(p) can be replaced by the more general Rényi entropy of order α and H α (p). We determine...
Uložené v:
| Vydané v: | IEEE transactions on information theory Ročník 63; číslo 1; s. 38 - 56 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
IEEE
01.01.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 0018-9448, 1557-9654 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | It was shown recently that estimating the Shannon entropy H(p) of a discrete k-symbol distribution p requires Θ(k/log k) samples, a number that grows near-linearly in the support size. In many applications, H(p) can be replaced by the more general Rényi entropy of order α and H α (p). We determine the number of samples needed to estimate H α (p) for all α, showing that α <; 1 requires a super-linear, roughly k 1/α samples, noninteger α > 1 requires a near-linear k samples, but, perhaps surprisingly, integer α > 1 requires only Θ(k 1-1/α ) samples. Furthermore, developing on a recently established connection between polynomial approximation and estimation of additive functions of the form Σ x f (p x ), we reduce the sample complexity for noninteger values of α by a factor of log k compared with the empirical estimator. The estimators achieving these bounds are simple and run in time linear in the number of samples. Our lower bounds provide explicit constructions of distributions with different Rényi entropies that are hard to distinguish. |
|---|---|
| Bibliografia: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 |
| ISSN: | 0018-9448 1557-9654 |
| DOI: | 10.1109/TIT.2016.2620435 |