Asymmetric normalized probabilistic linguistic term set based on prospect theory and its application to multi-attribute decision-making
The probabilistic linguistic term set (PLTS) shows great superiority in expressing decision-makers’ opinions. The multi-attribute decision-making (MADM) problem under a PLTS environment has gained attention from numerous scholars. However, the majority of current studies are not precise enough in ca...
Saved in:
| Published in: | Soft computing (Berlin, Germany) Vol. 27; no. 15; pp. 10427 - 10445 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.08.2023
Springer Nature B.V |
| Subjects: | |
| ISSN: | 1432-7643, 1433-7479 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | The probabilistic linguistic term set (PLTS) shows great superiority in expressing decision-makers’ opinions. The multi-attribute decision-making (MADM) problem under a PLTS environment has gained attention from numerous scholars. However, the majority of current studies are not precise enough in capturing information on PLTS. To address this problem, this paper presents a preference ranking organization method for enrichment of evaluations (PROMETHEE) based on the redefined PLTS and novel score function to solve MADM problems under a PLTS environment. First, an asymmetric normalized PLTS based on prospect theory (ANPLTSPT) is developed. Compared with the PLTS, ANPLTSPT offers a more realistic portrayal of decision-makers’ psychological state while ensuring the superiority of the PLTS. Second, regarding the structural complexity of ANPLTSPT, this paper attempts to simplify the computational process through a score function that can embody the characteristics of ANPLTSPT. Inspired by previously formulated score functions, a novel score function called Score-InInHe is developed, the corresponding definitions are given, and some further properties are discussed. With the support of the proposed Score-InInHe, the total score entropy is defined and an objective method to determine the attribute weights is proposed. Finally, the proposed approach is applied to the selection of a green supplier and the determination of air quality. The validity and realistic applicability of the proposed approach are demonstrated through comparative analyses and discussions. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1432-7643 1433-7479 |
| DOI: | 10.1007/s00500-023-08495-0 |