An Extended McKean–Vlasov Dynamic Programming Approach to Robust Equilibrium Controls Under Ambiguous Covariance Matrix
This paper studies a general class of time-inconsistent stochastic control problems under ambiguous covariance matrix. The time inconsistency is caused in various ways by a general objective functional and thus the associated control problem does not admit Bellman’s principle of optimality. Moreover...
Saved in:
| Published in: | Applied mathematics & optimization Vol. 88; no. 3; p. 91 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
Springer US
01.12.2023
Springer Nature B.V |
| Subjects: | |
| ISSN: | 0095-4616, 1432-0606 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | This paper studies a general class of time-inconsistent stochastic control problems under ambiguous covariance matrix. The time inconsistency is caused in various ways by a general objective functional and thus the associated control problem does not admit Bellman’s principle of optimality. Moreover, we model the state by a McKean–Vlasov dynamics under a set of non-dominated probability measures induced by the ambiguous covariance matrix of the noises. We apply a game-theoretic concept of subgame perfect Nash equilibrium to develop a robust equilibrium control approach, which can yield robust time-consistent decisions. We characterize the robust equilibrium control and equilibrium value function by an extended optimality principle and then we further deduce a system of Bellman–Isaacs equations to determine the equilibrium solution on the Wasserstein space of probability measures. The proposed analytical framework is illustrated with its applications to robust continuous-time mean-variance portfolio selection problems with risk aversion coefficient being constant or state-dependent, under the ambiguity stemming from ambiguous volatilities of multiple assets or ambiguous correlation between two risky assets. The explicit equilibrium portfolio solutions are represented in terms of the probability law. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0095-4616 1432-0606 |
| DOI: | 10.1007/s00245-023-10069-3 |