An Extended McKean–Vlasov Dynamic Programming Approach to Robust Equilibrium Controls Under Ambiguous Covariance Matrix
This paper studies a general class of time-inconsistent stochastic control problems under ambiguous covariance matrix. The time inconsistency is caused in various ways by a general objective functional and thus the associated control problem does not admit Bellman’s principle of optimality. Moreover...
Uložené v:
| Vydané v: | Applied mathematics & optimization Ročník 88; číslo 3; s. 91 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
Springer US
01.12.2023
Springer Nature B.V |
| Predmet: | |
| ISSN: | 0095-4616, 1432-0606 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | This paper studies a general class of time-inconsistent stochastic control problems under ambiguous covariance matrix. The time inconsistency is caused in various ways by a general objective functional and thus the associated control problem does not admit Bellman’s principle of optimality. Moreover, we model the state by a McKean–Vlasov dynamics under a set of non-dominated probability measures induced by the ambiguous covariance matrix of the noises. We apply a game-theoretic concept of subgame perfect Nash equilibrium to develop a robust equilibrium control approach, which can yield robust time-consistent decisions. We characterize the robust equilibrium control and equilibrium value function by an extended optimality principle and then we further deduce a system of Bellman–Isaacs equations to determine the equilibrium solution on the Wasserstein space of probability measures. The proposed analytical framework is illustrated with its applications to robust continuous-time mean-variance portfolio selection problems with risk aversion coefficient being constant or state-dependent, under the ambiguity stemming from ambiguous volatilities of multiple assets or ambiguous correlation between two risky assets. The explicit equilibrium portfolio solutions are represented in terms of the probability law. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0095-4616 1432-0606 |
| DOI: | 10.1007/s00245-023-10069-3 |