Chance-constrained programs with convex underlying functions: a bilevel convex optimization perspective
Chance constraints are a valuable tool for the design of safe decisions in uncertain environments; they are used to model satisfaction of a constraint with a target probability. However, because of possible non-convexity and non-smoothness, optimizing over a chance constrained set is challenging. In...
Uloženo v:
| Vydáno v: | Computational optimization and applications Ročník 88; číslo 3; s. 819 - 847 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.07.2024
Springer Nature B.V |
| Témata: | |
| ISSN: | 0926-6003, 1573-2894 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Chance constraints are a valuable tool for the design of safe decisions in uncertain environments; they are used to model satisfaction of a constraint with a target probability. However, because of possible non-convexity and non-smoothness, optimizing over a chance constrained set is challenging. In this paper, we consider chance constrained programs where the objective function and the constraints are convex with respect to the decision parameter. We establish an exact reformulation of such a problem as a bilevel problem with a convex lower-level. Then we leverage this bilevel formulation to propose a tractable penalty approach, in the setting of finitely supported random variables. The penalized objective is a difference-of-convex function that we minimize with a suitable bundle algorithm. We release an easy-to-use open-source python toolbox implementing the approach, with a special emphasis on fast computational subroutines. |
|---|---|
| AbstractList | Chance constraints are a valuable tool for the design of safe decisions in uncertain environments; they are used to model satisfaction of a constraint with a target probability. However, because of possible non-convexity and non-smoothness, optimizing over a chance constrained set is challenging. In this paper, we consider chance constrained programs where the objective function and the constraints are convex with respect to the decision parameter. We establish an exact reformulation of such a problem as a bilevel problem with a convex lower-level. Then we leverage this bilevel formulation to propose a tractable penalty approach, in the setting of finitely supported random variables. The penalized objective is a difference-of-convex function that we minimize with a suitable bundle algorithm. We release an easy-to-use open-source python toolbox implementing the approach, with a special emphasis on fast computational subroutines. |
| Author | Malick, Jérôme Laguel, Yassine van Ackooij, Wim |
| Author_xml | – sequence: 1 givenname: Yassine orcidid: 0000-0001-6289-9590 surname: Laguel fullname: Laguel, Yassine email: yassine.laguel@univ-cotedazur.fr organization: Université Côte d’Azur – sequence: 2 givenname: Jérôme surname: Malick fullname: Malick, Jérôme organization: CNRS, LJK – sequence: 3 givenname: Wim orcidid: 0000-0002-9943-3572 surname: van Ackooij fullname: van Ackooij, Wim organization: EDF R &D. OSIRIS |
| BookMark | eNp9kE1LAzEQhoNUsK3-AU8LnlcnX92NNyl-QcGLnkOSZtuUbXZNttX66822iuChpwnM-8xknhEa-MZbhC4xXGOA4iZi4KXIgbAcgBc0FydoiPsHKQUboCEIMsknAPQMjWJcAYAoKBmixXSpvLG5aXzsgnLezrM2NIug1jH7cN0yS52t_cw2fm5DvXN-kVUbbzqXgNtMZdrVdmvr31jTdm7tvlTfz1obYmtTdmvP0Wml6mgvfuoYvT3cv06f8tnL4_P0bpYbikWXC2EM4VjbCittlFG61IbpouTlnHJGCNdgjCmZYBVURTnnvBKFJkQrxTAzdIyuDnPTEe8bGzu5ajbBp5WSwqQAKrhgKUUOKROaGIOtZBvcWoWdxCB7ofIgVCahci9UigSV_yDjuv2hvbj6OEoPaEx7_MKGv18dob4BUwqPvw |
| CitedBy_id | crossref_primary_10_1287_ijoc_2024_0648 |
| Cites_doi | 10.1137/070702928 10.1007/s10957-009-9523-6 10.1007/s11228-020-00552-2 10.1007/BFb0120831 10.1287/educ.2013.0111 10.1287/educ.1080.0048 10.1007/s11228-020-00566-w 10.1007/s10107-004-0552-5 10.1007/978-3-319-93031-2_27 10.1007/s10898-019-00755-4 10.1007/s007800200072 10.1137/1.9781611971309 10.1023/A:1018901022726 10.1007/s10898-010-9579-8 10.1287/opre.2021.2225 10.1007/1-84628-095-8_2 10.1287/mnsc.6.1.73 10.1007/PL00011393 10.1287/moor.1050.0186 10.1287/opre.2019.1942 10.1007/s10107-014-0801-1 10.1007/s12532-020-00199-y 10.1137/050622328 10.1109/MLSP49062.2020.9231909 10.1109/TAC.2006.875041 10.1287/opre.1100.0910 10.1137/0331063 10.1111/j.1467-9965.2007.00311.x 10.1145/2833157.2833162 10.1137/19M1261985 10.1137/S1052623493257344 10.21314/JOR.2000.038 10.1007/s10589-007-9105-1 10.1007/978-94-017-3087-7 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 88I 8AL 8AO 8FD 8FE 8FG 8FK 8FL ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- L6V L7M L~C L~D M0C M0N M2P M7S P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U |
| DOI | 10.1007/s10589-024-00573-9 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ProQuest ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology collection ProQuest One Community College ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Science Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business (UW System Shared) ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic |
| DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ABI/INFORM Complete ProQuest One Applied & Life Sciences ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest Business Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Pharma Collection ProQuest Central ABI/INFORM Professional Advanced ProQuest Engineering Collection ProQuest Central Korea Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | ProQuest Business Collection (Alumni Edition) |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Statistics Mathematics |
| EISSN | 1573-2894 |
| EndPage | 847 |
| ExternalDocumentID | 10_1007_s10589_024_00573_9 |
| GroupedDBID | -52 -5D -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29F 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 7WY 88I 8AO 8FE 8FG 8FL 8FW 8TC 8UJ 8VB 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHQJS AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKVCP ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BAPOH BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EBU EDO EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GROUPED_ABI_INFORM_RESEARCH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K1G K60 K6V K6~ K7- KDC KOV KOW L6V LAK LLZTM M0C M0N M2P M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9R PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS QWB R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZD RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7X Z81 Z83 Z86 Z88 Z8M Z8N Z8R Z8U Z8W Z92 ZL0 ZMTXR ZWQNP ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 7SC 7XB 8AL 8FD 8FK JQ2 L.- L7M L~C L~D PKEHL PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c319t-99cc251bef1abcacab8bc4b7858d354225b0ccc8494f0f78d55f97b22baa414c3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001208824000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0926-6003 |
| IngestDate | Wed Nov 26 14:52:42 EST 2025 Tue Nov 18 22:42:28 EST 2025 Sat Nov 29 01:51:31 EST 2025 Fri Feb 21 02:41:48 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | DC programming Chance constraints Bilevel optimization Convex optimization Stochastic programming |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-99cc251bef1abcacab8bc4b7858d354225b0ccc8494f0f78d55f97b22baa414c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-6289-9590 0000-0002-9943-3572 |
| PQID | 3067039594 |
| PQPubID | 30811 |
| PageCount | 29 |
| ParticipantIDs | proquest_journals_3067039594 crossref_primary_10_1007_s10589_024_00573_9 crossref_citationtrail_10_1007_s10589_024_00573_9 springer_journals_10_1007_s10589_024_00573_9 |
| PublicationCentury | 2000 |
| PublicationDate | 20240700 2024-07-00 20240701 |
| PublicationDateYYYYMMDD | 2024-07-01 |
| PublicationDate_xml | – month: 7 year: 2024 text: 20240700 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationSubtitle | An International Journal |
| PublicationTitle | Computational optimization and applications |
| PublicationTitleAbbrev | Comput Optim Appl |
| PublicationYear | 2024 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | FöllmerHSchiedAConvex measures of risk and trading constraintsFinanc. Stochast.200264429447193237910.1007/s007800200072 Clarke, F.H.: Optimization and nonsmooth analysis, vol. 5. Siam (1990) RockafellarRTRoysetJORandom variables, monotone relations, and convex analysisMath. Program.20141481–2297331327485410.1007/s10107-014-0801-1 CalafioreGCCampiMCThe scenario approach to robust control designIEEE Trans. Autom. Control2006515742753223259710.1109/TAC.2006.875041 Laguel, Y., Malick, J., Harchaoui, Z.: First-order optimization for superquantile-based supervised learning. In: 2020 IEEE 30th International Workshop on Machine Learning for Signal Processing (MLSP), pp. 1–6. IEEE (2020) LaguelYvan AckooijWMalickJMatiussi RamalhoGOn the convexity of level-sets of probability functionsJ. Convex Anal.20222921324447930 LuenbergerDGYeYLinear and Nonlinear Programming1984Springer Vandenberghe, L.: The cvxopt linear and quadratic cone program solvers. http://cvxopt.org/documentation/coneprog.pdf (2010) LuedtkeJAhmedSA sample approximation approach for optimization with probabilistic constraintsSIAM J. Optim.200819674699242503510.1137/070702928 Lam, S.K., Pitrou, A., Seibert, S.: Numba: A llvm-based python jit compiler. In: Proceedings of the Second Workshop on the LLVM Compiler Infrastructure in HPC, LLVM ’15. Association for Computing Machinery, New York, NY, USA (2015) NesterovYSmooth minimization of non-smooth functionsMath. Program.20051031127152216653710.1007/s10107-004-0552-5 FacchineiFLamparielloLPartial penalization for the solution of generalized nash equilibrium problemsJ. Global Optim.2011503957278755210.1007/s10898-010-9579-8 YeJJZhuDZhuQJExact penalization and necessary optimality conditions for generalized bilevel programming problemsSIAM J. Optim.199772481507144363010.1137/S1052623493257344 van AckooijWHenrionRMöllerAZorgatiRJoint chance constrained programming for hydro reservoir managementOptim. Eng.2014155093213858 Hiriart-UrrutyJBLemaréchalCConvex analysis and minimization algorithms I: fundamentals2013Springer Kannan, R., Luedtke, J.: A stochastic approximation method for approximating the efficient frontier of chance-constrained nonlinear programs (2020) de OliveiraWThe abc of dc programmingSet-Valued Variational Anal.2020284679706416991810.1007/s11228-020-00566-w Rockafellar, R.T., Royset, J.O.: Superquantiles and their applications to risk, random variables, and regression. In: Theory driven by influential applications. INFORMS (2013) RuszczyńskiAShapiroAOptimization of convex risk functionsMath. Oper. Res.2006313433452225441710.1287/moor.1050.0186 van AckooijWA discussion of probability functions and constraints from a variational perspectiveSet-Valued Variatl. Anal.2020284585609416991410.1007/s11228-020-00552-2 MedovaEChance-constrained stochastic programming forintegrated services network managementAnn. Oper. Res.199881213230163839710.1023/A:1018901022726 PagnoncelliBKAhmedSShapiroASample average approximation method for chance constrained programming: theory and applicationsJ. Optim. Theory Appl.20091422399416252579910.1007/s10957-009-9523-6 Prékopa, A., Szántai, T.: Flood control reservoir system design using stochastic programming. In: Mathematical programming in use, pp. 138–151. Springer (1978) DentchevaDPrékopaARuszczynskiAConcavity and efficient points of discrete distributions in probabilistic programmingMath. Programm.200089155179505710.1007/PL00011393 BaQPangJSExact penalization of generalized nash equilibrium problemsOper. Res.202270314481464445104710.1287/opre.2019.1942 HenrionRStrugarekCConvexity of chance constraints with independent random variablesComput. Optim. Appl.200841263276244789610.1007/s10589-007-9105-1 van AckooijWHenrionRMöllerAZorgatiRJoint chance constrained programming for hydro reservoir managementOptim. Eng.20141525095313213858 BurkeJVFerrisMCWeak sharp minima in mathematical programmingSIAM J. Control. Optim.199331513401359123400610.1137/0331063 JiangNXieWAlso-x and also-x+: better convex approximations for chance constrained programsOper. Res.202270635813600453853410.1287/opre.2021.2225 Peña-OrdieresALuedtkeJRWächterASolving chance-constrained problems via a smooth sample-based nonlinear approximationSIAM J. Optim.202030322212250413403710.1137/19M1261985 RockafellarRTUryasevSOptimization of conditional value-at-riskJ. Risk20002214210.21314/JOR.2000.038 HongLJYangYZhangLSequential convex approximations to joint chance constrained programs: a monte carlo approachOper. Res.2011593617284854210.1287/opre.1100.0910 ChowYGhavamzadehMJansonLPavoneMRisk-constrained reinforcement learning with percentile risk criteriaJ. Mach. Learn. Res.2017181607061203813816 Kröger, O., Coffrin, C., Hijazi, H., Nagarajan, H.: Juniper: An open-source nonlinear branch-and-bound solver in julia. In: Integration of Constraint Programming, Artificial Intelligence, and Operations Research. Springer International Publishing (2018) Ahmed, S., Shapiro, A.: Solving chance-constrained stochastic programs via sampling and integer programming. In: State-of-the-art decision-making tools in the information-intensive age, pp. 261–269. Informs (2008) Prékopa, A.: Stochastic Programming. Kluwer, Dordrecht (1995). https://doi.org/10.1007/978-94-017-3087-7 Ben-TalATeboulleMAn old-new concept of convex risk measures: the optimized certainty equivalentMath. Financ.2007173449476233226510.1111/j.1467-9965.2007.00311.x de OliveiraWProximal bundle methods for nonsmooth dc programmingJ. Glob. Optim.201975523401243810.1007/s10898-019-00755-4 Dentcheva, D.: Optimization models with probabilistic constraints. In: Probabilistic and randomized methods for design under uncertainty, pp. 49–97. Springer (2006) NemirovskiAShapiroAConvex approximations of chance constrained programsSIAM J. Optim.2006174969996227450010.1137/050622328 CharnesACooperWWChance-constrained programmingManag. Sci.195961737914847810.1287/mnsc.6.1.73 A Ruszczyński (573_CR36) 2006; 31 Y Nesterov (573_CR28) 2005; 103 573_CR8 A Peña-Ordieres (573_CR30) 2020; 30 Y Chow (573_CR7) 2017; 18 573_CR32 573_CR1 573_CR11 573_CR33 573_CR31 W van Ackooij (573_CR39) 2014; 15 A Nemirovski (573_CR27) 2006; 17 Y Laguel (573_CR22) 2022; 29 E Medova (573_CR26) 1998; 81 JB Hiriart-Urruty (573_CR16) 2013 R Henrion (573_CR15) 2008; 41 Q Ba (573_CR2) 2022; 70 LJ Hong (573_CR17) 2011; 59 W van Ackooij (573_CR37) 2020; 28 A Ben-Tal (573_CR3) 2007; 17 BK Pagnoncelli (573_CR29) 2009; 142 A Charnes (573_CR6) 1959; 6 J Luedtke (573_CR24) 2008; 19 JJ Ye (573_CR41) 1997; 7 RT Rockafellar (573_CR34) 2014; 148 F Facchinei (573_CR13) 2011; 50 JV Burke (573_CR4) 1993; 31 573_CR23 H Föllmer (573_CR14) 2002; 6 573_CR21 RT Rockafellar (573_CR35) 2000; 2 573_CR20 GC Calafiore (573_CR5) 2006; 51 573_CR40 DG Luenberger (573_CR25) 1984 D Dentcheva (573_CR12) 2000; 89 573_CR19 N Jiang (573_CR18) 2022; 70 W van Ackooij (573_CR38) 2014; 15 W de Oliveira (573_CR10) 2020; 28 W de Oliveira (573_CR9) 2019; 75 |
| References_xml | – reference: NemirovskiAShapiroAConvex approximations of chance constrained programsSIAM J. Optim.2006174969996227450010.1137/050622328 – reference: Ahmed, S., Shapiro, A.: Solving chance-constrained stochastic programs via sampling and integer programming. In: State-of-the-art decision-making tools in the information-intensive age, pp. 261–269. Informs (2008) – reference: NesterovYSmooth minimization of non-smooth functionsMath. Program.20051031127152216653710.1007/s10107-004-0552-5 – reference: Ben-TalATeboulleMAn old-new concept of convex risk measures: the optimized certainty equivalentMath. Financ.2007173449476233226510.1111/j.1467-9965.2007.00311.x – reference: BaQPangJSExact penalization of generalized nash equilibrium problemsOper. Res.202270314481464445104710.1287/opre.2019.1942 – reference: Clarke, F.H.: Optimization and nonsmooth analysis, vol. 5. Siam (1990) – reference: RockafellarRTUryasevSOptimization of conditional value-at-riskJ. Risk20002214210.21314/JOR.2000.038 – reference: JiangNXieWAlso-x and also-x+: better convex approximations for chance constrained programsOper. Res.202270635813600453853410.1287/opre.2021.2225 – reference: Kröger, O., Coffrin, C., Hijazi, H., Nagarajan, H.: Juniper: An open-source nonlinear branch-and-bound solver in julia. In: Integration of Constraint Programming, Artificial Intelligence, and Operations Research. Springer International Publishing (2018) – reference: Laguel, Y., Malick, J., Harchaoui, Z.: First-order optimization for superquantile-based supervised learning. In: 2020 IEEE 30th International Workshop on Machine Learning for Signal Processing (MLSP), pp. 1–6. IEEE (2020) – reference: Prékopa, A.: Stochastic Programming. Kluwer, Dordrecht (1995). https://doi.org/10.1007/978-94-017-3087-7 – reference: LaguelYvan AckooijWMalickJMatiussi RamalhoGOn the convexity of level-sets of probability functionsJ. Convex Anal.20222921324447930 – reference: Rockafellar, R.T., Royset, J.O.: Superquantiles and their applications to risk, random variables, and regression. In: Theory driven by influential applications. INFORMS (2013) – reference: Prékopa, A., Szántai, T.: Flood control reservoir system design using stochastic programming. In: Mathematical programming in use, pp. 138–151. Springer (1978) – reference: HongLJYangYZhangLSequential convex approximations to joint chance constrained programs: a monte carlo approachOper. Res.2011593617284854210.1287/opre.1100.0910 – reference: CalafioreGCCampiMCThe scenario approach to robust control designIEEE Trans. Autom. Control2006515742753223259710.1109/TAC.2006.875041 – reference: MedovaEChance-constrained stochastic programming forintegrated services network managementAnn. Oper. Res.199881213230163839710.1023/A:1018901022726 – reference: LuenbergerDGYeYLinear and Nonlinear Programming1984Springer – reference: Peña-OrdieresALuedtkeJRWächterASolving chance-constrained problems via a smooth sample-based nonlinear approximationSIAM J. Optim.202030322212250413403710.1137/19M1261985 – reference: LuedtkeJAhmedSA sample approximation approach for optimization with probabilistic constraintsSIAM J. Optim.200819674699242503510.1137/070702928 – reference: van AckooijWHenrionRMöllerAZorgatiRJoint chance constrained programming for hydro reservoir managementOptim. Eng.20141525095313213858 – reference: RockafellarRTRoysetJORandom variables, monotone relations, and convex analysisMath. Program.20141481–2297331327485410.1007/s10107-014-0801-1 – reference: RuszczyńskiAShapiroAOptimization of convex risk functionsMath. Oper. Res.2006313433452225441710.1287/moor.1050.0186 – reference: de OliveiraWThe abc of dc programmingSet-Valued Variational Anal.2020284679706416991810.1007/s11228-020-00566-w – reference: DentchevaDPrékopaARuszczynskiAConcavity and efficient points of discrete distributions in probabilistic programmingMath. Programm.200089155179505710.1007/PL00011393 – reference: Lam, S.K., Pitrou, A., Seibert, S.: Numba: A llvm-based python jit compiler. In: Proceedings of the Second Workshop on the LLVM Compiler Infrastructure in HPC, LLVM ’15. Association for Computing Machinery, New York, NY, USA (2015) – reference: van AckooijWA discussion of probability functions and constraints from a variational perspectiveSet-Valued Variatl. Anal.2020284585609416991410.1007/s11228-020-00552-2 – reference: BurkeJVFerrisMCWeak sharp minima in mathematical programmingSIAM J. Control. Optim.199331513401359123400610.1137/0331063 – reference: CharnesACooperWWChance-constrained programmingManag. Sci.195961737914847810.1287/mnsc.6.1.73 – reference: Hiriart-UrrutyJBLemaréchalCConvex analysis and minimization algorithms I: fundamentals2013Springer – reference: de OliveiraWProximal bundle methods for nonsmooth dc programmingJ. Glob. Optim.201975523401243810.1007/s10898-019-00755-4 – reference: FöllmerHSchiedAConvex measures of risk and trading constraintsFinanc. Stochast.200264429447193237910.1007/s007800200072 – reference: FacchineiFLamparielloLPartial penalization for the solution of generalized nash equilibrium problemsJ. Global Optim.2011503957278755210.1007/s10898-010-9579-8 – reference: ChowYGhavamzadehMJansonLPavoneMRisk-constrained reinforcement learning with percentile risk criteriaJ. Mach. Learn. Res.2017181607061203813816 – reference: Kannan, R., Luedtke, J.: A stochastic approximation method for approximating the efficient frontier of chance-constrained nonlinear programs (2020) – reference: Vandenberghe, L.: The cvxopt linear and quadratic cone program solvers. http://cvxopt.org/documentation/coneprog.pdf (2010) – reference: YeJJZhuDZhuQJExact penalization and necessary optimality conditions for generalized bilevel programming problemsSIAM J. Optim.199772481507144363010.1137/S1052623493257344 – reference: PagnoncelliBKAhmedSShapiroASample average approximation method for chance constrained programming: theory and applicationsJ. Optim. Theory Appl.20091422399416252579910.1007/s10957-009-9523-6 – reference: HenrionRStrugarekCConvexity of chance constraints with independent random variablesComput. Optim. Appl.200841263276244789610.1007/s10589-007-9105-1 – reference: van AckooijWHenrionRMöllerAZorgatiRJoint chance constrained programming for hydro reservoir managementOptim. Eng.2014155093213858 – reference: Dentcheva, D.: Optimization models with probabilistic constraints. In: Probabilistic and randomized methods for design under uncertainty, pp. 49–97. Springer (2006) – volume: 19 start-page: 674 year: 2008 ident: 573_CR24 publication-title: SIAM J. Optim. doi: 10.1137/070702928 – volume: 142 start-page: 399 issue: 2 year: 2009 ident: 573_CR29 publication-title: J. Optim. Theory Appl. doi: 10.1007/s10957-009-9523-6 – volume: 28 start-page: 585 issue: 4 year: 2020 ident: 573_CR37 publication-title: Set-Valued Variatl. Anal. doi: 10.1007/s11228-020-00552-2 – ident: 573_CR31 doi: 10.1007/BFb0120831 – ident: 573_CR33 doi: 10.1287/educ.2013.0111 – volume: 15 start-page: 509 issue: 2 year: 2014 ident: 573_CR38 publication-title: Optim. Eng. – ident: 573_CR40 – ident: 573_CR1 doi: 10.1287/educ.1080.0048 – volume: 28 start-page: 679 issue: 4 year: 2020 ident: 573_CR10 publication-title: Set-Valued Variational Anal. doi: 10.1007/s11228-020-00566-w – volume: 103 start-page: 127 issue: 1 year: 2005 ident: 573_CR28 publication-title: Math. Program. doi: 10.1007/s10107-004-0552-5 – ident: 573_CR20 doi: 10.1007/978-3-319-93031-2_27 – volume: 75 start-page: 523 year: 2019 ident: 573_CR9 publication-title: J. Glob. Optim. doi: 10.1007/s10898-019-00755-4 – volume: 6 start-page: 429 issue: 4 year: 2002 ident: 573_CR14 publication-title: Financ. Stochast. doi: 10.1007/s007800200072 – ident: 573_CR8 doi: 10.1137/1.9781611971309 – volume: 18 start-page: 6070 issue: 1 year: 2017 ident: 573_CR7 publication-title: J. Mach. Learn. Res. – volume: 81 start-page: 213 year: 1998 ident: 573_CR26 publication-title: Ann. Oper. Res. doi: 10.1023/A:1018901022726 – volume: 50 start-page: 39 year: 2011 ident: 573_CR13 publication-title: J. Global Optim. doi: 10.1007/s10898-010-9579-8 – volume: 70 start-page: 3581 issue: 6 year: 2022 ident: 573_CR18 publication-title: Oper. Res. doi: 10.1287/opre.2021.2225 – volume: 29 start-page: 1 issue: 2 year: 2022 ident: 573_CR22 publication-title: J. Convex Anal. – ident: 573_CR11 doi: 10.1007/1-84628-095-8_2 – volume: 6 start-page: 73 issue: 1 year: 1959 ident: 573_CR6 publication-title: Manag. Sci. doi: 10.1287/mnsc.6.1.73 – volume: 89 start-page: 55 issue: 1 year: 2000 ident: 573_CR12 publication-title: Math. Programm. doi: 10.1007/PL00011393 – volume: 31 start-page: 433 issue: 3 year: 2006 ident: 573_CR36 publication-title: Math. Oper. Res. doi: 10.1287/moor.1050.0186 – volume: 70 start-page: 1448 issue: 3 year: 2022 ident: 573_CR2 publication-title: Oper. Res. doi: 10.1287/opre.2019.1942 – volume-title: Convex analysis and minimization algorithms I: fundamentals year: 2013 ident: 573_CR16 – volume: 148 start-page: 297 issue: 1–2 year: 2014 ident: 573_CR34 publication-title: Math. Program. doi: 10.1007/s10107-014-0801-1 – ident: 573_CR19 doi: 10.1007/s12532-020-00199-y – volume: 17 start-page: 969 issue: 4 year: 2006 ident: 573_CR27 publication-title: SIAM J. Optim. doi: 10.1137/050622328 – volume: 15 start-page: 509 year: 2014 ident: 573_CR39 publication-title: Optim. Eng. – ident: 573_CR21 doi: 10.1109/MLSP49062.2020.9231909 – volume: 51 start-page: 742 issue: 5 year: 2006 ident: 573_CR5 publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.2006.875041 – volume: 59 start-page: 617 issue: 3 year: 2011 ident: 573_CR17 publication-title: Oper. Res. doi: 10.1287/opre.1100.0910 – volume: 31 start-page: 1340 issue: 5 year: 1993 ident: 573_CR4 publication-title: SIAM J. Control. Optim. doi: 10.1137/0331063 – volume: 17 start-page: 449 issue: 3 year: 2007 ident: 573_CR3 publication-title: Math. Financ. doi: 10.1111/j.1467-9965.2007.00311.x – ident: 573_CR23 doi: 10.1145/2833157.2833162 – volume: 30 start-page: 2221 issue: 3 year: 2020 ident: 573_CR30 publication-title: SIAM J. Optim. doi: 10.1137/19M1261985 – volume: 7 start-page: 481 issue: 2 year: 1997 ident: 573_CR41 publication-title: SIAM J. Optim. doi: 10.1137/S1052623493257344 – volume: 2 start-page: 21 year: 2000 ident: 573_CR35 publication-title: J. Risk doi: 10.21314/JOR.2000.038 – volume-title: Linear and Nonlinear Programming year: 1984 ident: 573_CR25 – volume: 41 start-page: 263 year: 2008 ident: 573_CR15 publication-title: Comput. Optim. Appl. doi: 10.1007/s10589-007-9105-1 – ident: 573_CR32 doi: 10.1007/978-94-017-3087-7 |
| SSID | ssj0009732 |
| Score | 2.3904955 |
| Snippet | Chance constraints are a valuable tool for the design of safe decisions in uncertain environments; they are used to model satisfaction of a constraint with a... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 819 |
| SubjectTerms | Algorithms Approximation Constraints Convex analysis Convex and Discrete Geometry Convexity Management Science Mathematics Mathematics and Statistics Operations Research Operations Research/Decision Theory Optimization Random variables Smoothness Statistics |
| SummonAdditionalLinks | – databaseName: Computer Science Database dbid: K7- link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA6-DnrwLa4vcvCmwT6SpvEiIoqgiAcFbyWZJiKsu-vuuvjzzcTUqqAXz01C228yMyTzfUPIfuEg00po5qTOkZKTM51yxwoufbQF5dP-oK5_LW9uyocHdRsP3EaxrLLxicFR133AM_IjTG2TXAnFTwYvDLtG4e1qbKExTWbTLEvRzq8ka0V3ZWhQlqisYD6w55E0E6lzAouFMs6CJiBT3wNTm23-uCANcedi6b9vvEwWY8ZJTz9MZIVM2d4qWfiiQ7hGHpFjAJYBJovYM8LWNBZujSie1NJQnP5GkXE27CIzimJADDZ7TDU13rdMbLcZ1vd-6DkSPOmgpXOuk_uL87uzSxY7MDDwW3PMlALwCZCxLtUGNGhTGuBGlqKsc8G9LzAJAJRccZc4WdZCOCVNlhmtecoh3yAzvX7PbhJaOCt5kdiiFo5b4XSZJ2Bqp7WQqTeXDkmb319BlCfHL-5WrbAyQlZ5yKoAWeXnHHzOGXyIc_w5eqfBqYobdVS1IHXIYYN0-_j31bb-Xm2bzGfBuLCwd4fMjIevdpfMwWT8NBruBTN9By_s7yg priority: 102 providerName: ProQuest |
| Title | Chance-constrained programs with convex underlying functions: a bilevel convex optimization perspective |
| URI | https://link.springer.com/article/10.1007/s10589-024-00573-9 https://www.proquest.com/docview/3067039594 |
| Volume | 88 |
| WOSCitedRecordID | wos001208824000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: ABI/INFORM Global customDbUrl: eissn: 1573-2894 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0009732 issn: 0926-6003 databaseCode: M0C dateStart: 20240101 isFulltext: true titleUrlDefault: https://search.proquest.com/abiglobal providerName: ProQuest – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1573-2894 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0009732 issn: 0926-6003 databaseCode: P5Z dateStart: 20240101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1573-2894 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0009732 issn: 0926-6003 databaseCode: K7- dateStart: 20240101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1573-2894 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0009732 issn: 0926-6003 databaseCode: M7S dateStart: 20240101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest ABI/INFORM Collection customDbUrl: eissn: 1573-2894 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0009732 issn: 0926-6003 databaseCode: 7WY dateStart: 20240101 isFulltext: true titleUrlDefault: https://www.proquest.com/abicomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1573-2894 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0009732 issn: 0926-6003 databaseCode: BENPR dateStart: 20240101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 1573-2894 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0009732 issn: 0926-6003 databaseCode: M2P dateStart: 20240101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK customDbUrl: eissn: 1573-2894 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009732 issn: 0926-6003 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7RlkM5FCggWsrKB25gKQ87jrm1VSsk6GrV8ihcInti97Jsq9226s9nxps0BQESXEayYkeJZzwzief7DPCqilg4q52MxpUMySmly1WUlTIUbdFS2p_Y9T-Y8bg-PbWTDhS26Kvd-y3J5KnvgN00l_cUSiYWP2lXYI3CXc3L8fjk80C1a9KxZJktKknhvOygMr-_x8_haMgxf9kWTdHm8OH_Pecj2OiyS7G7NIfHcC_MNuHBHc5Bah3dErUuNmGdk80lV_MTOGOoAQaJnDPy0RGhFV391kLwD1uRatRvBAPP5lMGSAmOi8l03wonPLmY6zDtu52TO_re4TzFxYDqfAqfDg8-7r-T3UEMEmmFXkprESkP8iHmzqND52uPypta122pFbkEnyFirayKWTR1q3W0xheFd07lCstnsDo7n4XnIKoYjKqyULU6qqCjq8sMfRud0yYnq9mCvNdHgx1LOb_xtBn4lXl-G5rfJs1vQ2Ne3465WHJ0_LX3Tq_mpluvi4Y_nLLSaqu24E2v1uHyn--2_W_dX8B6kSyD6313YPVyfhVewn28JlXPR7BivnwdwdrewXhyTK33RpI8yvZZFhOW5oTkRH8bJZv_Afxt9ZA |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB6lBanlwKugBgL4ACewug97vUZCCBWqVg0Rh1bqbWvP2ggpTdIkFPhT_EY8zi4LleitB85rW_LuN4-15_sG4HnhMTNaGu6VyYmSk3OTCs8LoUK0RR3S_qiuP1SjUXlyoj_14GfLhaGyytYnRkddT5HOyHcotU1yLbV4Ozvn1DWKblfbFhorWBy6H9_CL9vizcH78H1fZNneh6Pdfd50FeAY4LbkWiOGoG6dT41Fg8aWFoVVpSzrXIqAb5sgYim08IlXZS2l18pmmTVGpALzsO4a3BAimAOVCia7ncivig3REp0VPCQSeUPSaah6koqTMsGjBiHXfwfCLru9dCEb49zenf_tDd2F201Gzd6tTOAe9NzkPtz6Q2dxCz4ThwIdR0qGqSeGq1lTmLZgdBLNYvH9d0aMuvmYmF-MAn60ydfMMBt854Ubt8Omwc-eNQRWNuvoqg_g-Fp2-hDWJ9OJ2wZWeKdEkbiill446U2ZJ2hrb4xUaTCHPqTt566wkV-nHY-rTjiaIFIFiFQRIlWY8_L3nNlKfOTK0YMWF1XjiBZVB4o-vGqR1T3-92qPrl7tGWzsH30cVsOD0eFj2MwisKmIeQDry_lX9wRu4sXyy2L-NJoIg9PrRtwvLVROrQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VFiE4tHyKQgs-wAms5sOOY6QKoZYV1VarHkDqLdgTGyEtu8vuUuCv8evweB1CkdpbD5xjW3LyZubFnjcD8KzyWBgtDffKlCTJKbnJheeVUCHaog60P1bXP1ajUX16qk_W4FenhaG0ys4nRkfdTpHOyPeI2malllrs-ZQWcXI4eD37yqmDFN20du00VhAZup_fw-_bYv_oMHzr50UxePv-4B1PHQY4BugtudaIIcBb53Nj0aCxtUVhVS3rtpQiYN1miFgLLXzmVd1K6bWyRWGNEbnAMqx7DTZCFJZkY0PF-4K_KjZHy3RR8UAqyiTYSbI9SYlKheCxHiHX54Niz3T_uZyNMW-w9T-_rduwmZg2e7MyjTuw5iZ34dZf9RfvwSfSVqDjSCSZemW4lqWEtQWjE2oWk_J_MFLazcekCGNEBKKtvmKG2eBTz9y4GzYN_vdLErayWS9jvQ8frmSnD2B9Mp24h8Aq75SoMle10gsnvanLDG3rjZEqD2ayDXn36RtMZdlpx-OmLyhNcGkCXJoIlybMefFnzmxVlOTS0TsdRprkoBZND5BteNmhrH988WqPLl_tKdwIQGuOj0bDx3CziBin3OYdWF_Ov7lduI5ny8-L-ZNoLQw-XjXgfgNzHldT |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chance-constrained+programs+with+convex+underlying+functions%3A+a+bilevel+convex+optimization+perspective&rft.jtitle=Computational+optimization+and+applications&rft.au=Laguel%2C+Yassine&rft.au=Malick%2C+J%C3%A9r%C3%B4me&rft.au=van+Ackooij%2C+Wim&rft.date=2024-07-01&rft.pub=Springer+US&rft.issn=0926-6003&rft.eissn=1573-2894&rft.volume=88&rft.issue=3&rft.spage=819&rft.epage=847&rft_id=info:doi/10.1007%2Fs10589-024-00573-9&rft.externalDocID=10_1007_s10589_024_00573_9 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-6003&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-6003&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-6003&client=summon |