Chance-constrained programs with convex underlying functions: a bilevel convex optimization perspective

Chance constraints are a valuable tool for the design of safe decisions in uncertain environments; they are used to model satisfaction of a constraint with a target probability. However, because of possible non-convexity and non-smoothness, optimizing over a chance constrained set is challenging. In...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computational optimization and applications Ročník 88; číslo 3; s. 819 - 847
Hlavní autoři: Laguel, Yassine, Malick, Jérôme, van Ackooij, Wim
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.07.2024
Springer Nature B.V
Témata:
ISSN:0926-6003, 1573-2894
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Chance constraints are a valuable tool for the design of safe decisions in uncertain environments; they are used to model satisfaction of a constraint with a target probability. However, because of possible non-convexity and non-smoothness, optimizing over a chance constrained set is challenging. In this paper, we consider chance constrained programs where the objective function and the constraints are convex with respect to the decision parameter. We establish an exact reformulation of such a problem as a bilevel problem with a convex lower-level. Then we leverage this bilevel formulation to propose a tractable penalty approach, in the setting of finitely supported random variables. The penalized objective is a difference-of-convex function that we minimize with a suitable bundle algorithm. We release an easy-to-use open-source python toolbox implementing the approach, with a special emphasis on fast computational subroutines.
AbstractList Chance constraints are a valuable tool for the design of safe decisions in uncertain environments; they are used to model satisfaction of a constraint with a target probability. However, because of possible non-convexity and non-smoothness, optimizing over a chance constrained set is challenging. In this paper, we consider chance constrained programs where the objective function and the constraints are convex with respect to the decision parameter. We establish an exact reformulation of such a problem as a bilevel problem with a convex lower-level. Then we leverage this bilevel formulation to propose a tractable penalty approach, in the setting of finitely supported random variables. The penalized objective is a difference-of-convex function that we minimize with a suitable bundle algorithm. We release an easy-to-use open-source python toolbox implementing the approach, with a special emphasis on fast computational subroutines.
Author Malick, Jérôme
Laguel, Yassine
van Ackooij, Wim
Author_xml – sequence: 1
  givenname: Yassine
  orcidid: 0000-0001-6289-9590
  surname: Laguel
  fullname: Laguel, Yassine
  email: yassine.laguel@univ-cotedazur.fr
  organization: Université Côte d’Azur
– sequence: 2
  givenname: Jérôme
  surname: Malick
  fullname: Malick, Jérôme
  organization: CNRS, LJK
– sequence: 3
  givenname: Wim
  orcidid: 0000-0002-9943-3572
  surname: van Ackooij
  fullname: van Ackooij, Wim
  organization: EDF R &D. OSIRIS
BookMark eNp9kE1LAzEQhoNUsK3-AU8LnlcnX92NNyl-QcGLnkOSZtuUbXZNttX66822iuChpwnM-8xknhEa-MZbhC4xXGOA4iZi4KXIgbAcgBc0FydoiPsHKQUboCEIMsknAPQMjWJcAYAoKBmixXSpvLG5aXzsgnLezrM2NIug1jH7cN0yS52t_cw2fm5DvXN-kVUbbzqXgNtMZdrVdmvr31jTdm7tvlTfz1obYmtTdmvP0Wml6mgvfuoYvT3cv06f8tnL4_P0bpYbikWXC2EM4VjbCittlFG61IbpouTlnHJGCNdgjCmZYBVURTnnvBKFJkQrxTAzdIyuDnPTEe8bGzu5ajbBp5WSwqQAKrhgKUUOKROaGIOtZBvcWoWdxCB7ofIgVCahci9UigSV_yDjuv2hvbj6OEoPaEx7_MKGv18dob4BUwqPvw
CitedBy_id crossref_primary_10_1287_ijoc_2024_0648
Cites_doi 10.1137/070702928
10.1007/s10957-009-9523-6
10.1007/s11228-020-00552-2
10.1007/BFb0120831
10.1287/educ.2013.0111
10.1287/educ.1080.0048
10.1007/s11228-020-00566-w
10.1007/s10107-004-0552-5
10.1007/978-3-319-93031-2_27
10.1007/s10898-019-00755-4
10.1007/s007800200072
10.1137/1.9781611971309
10.1023/A:1018901022726
10.1007/s10898-010-9579-8
10.1287/opre.2021.2225
10.1007/1-84628-095-8_2
10.1287/mnsc.6.1.73
10.1007/PL00011393
10.1287/moor.1050.0186
10.1287/opre.2019.1942
10.1007/s10107-014-0801-1
10.1007/s12532-020-00199-y
10.1137/050622328
10.1109/MLSP49062.2020.9231909
10.1109/TAC.2006.875041
10.1287/opre.1100.0910
10.1137/0331063
10.1111/j.1467-9965.2007.00311.x
10.1145/2833157.2833162
10.1137/19M1261985
10.1137/S1052623493257344
10.21314/JOR.2000.038
10.1007/s10589-007-9105-1
10.1007/978-94-017-3087-7
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
88I
8AL
8AO
8FD
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L6V
L7M
L~C
L~D
M0C
M0N
M2P
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1007/s10589-024-00573-9
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology collection
ProQuest One Community College
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Science Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business (UW System Shared)
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ProQuest Business Collection (Alumni Edition)

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Statistics
Mathematics
EISSN 1573-2894
EndPage 847
ExternalDocumentID 10_1007_s10589_024_00573_9
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29F
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
7WY
88I
8AO
8FE
8FG
8FL
8FW
8TC
8UJ
8VB
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHQJS
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EBU
EDO
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GROUPED_ABI_INFORM_RESEARCH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K1G
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAK
LLZTM
M0C
M0N
M2P
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9R
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
QWB
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZD
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7X
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8U
Z8W
Z92
ZL0
ZMTXR
ZWQNP
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c319t-99cc251bef1abcacab8bc4b7858d354225b0ccc8494f0f78d55f97b22baa414c3
IEDL.DBID RSV
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001208824000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0926-6003
IngestDate Wed Nov 26 14:52:42 EST 2025
Tue Nov 18 22:42:28 EST 2025
Sat Nov 29 01:51:31 EST 2025
Fri Feb 21 02:41:48 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords DC programming
Chance constraints
Bilevel optimization
Convex optimization
Stochastic programming
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-99cc251bef1abcacab8bc4b7858d354225b0ccc8494f0f78d55f97b22baa414c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6289-9590
0000-0002-9943-3572
PQID 3067039594
PQPubID 30811
PageCount 29
ParticipantIDs proquest_journals_3067039594
crossref_primary_10_1007_s10589_024_00573_9
crossref_citationtrail_10_1007_s10589_024_00573_9
springer_journals_10_1007_s10589_024_00573_9
PublicationCentury 2000
PublicationDate 20240700
2024-07-00
20240701
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 7
  year: 2024
  text: 20240700
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationSubtitle An International Journal
PublicationTitle Computational optimization and applications
PublicationTitleAbbrev Comput Optim Appl
PublicationYear 2024
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References FöllmerHSchiedAConvex measures of risk and trading constraintsFinanc. Stochast.200264429447193237910.1007/s007800200072
Clarke, F.H.: Optimization and nonsmooth analysis, vol. 5. Siam (1990)
RockafellarRTRoysetJORandom variables, monotone relations, and convex analysisMath. Program.20141481–2297331327485410.1007/s10107-014-0801-1
CalafioreGCCampiMCThe scenario approach to robust control designIEEE Trans. Autom. Control2006515742753223259710.1109/TAC.2006.875041
Laguel, Y., Malick, J., Harchaoui, Z.: First-order optimization for superquantile-based supervised learning. In: 2020 IEEE 30th International Workshop on Machine Learning for Signal Processing (MLSP), pp. 1–6. IEEE (2020)
LaguelYvan AckooijWMalickJMatiussi RamalhoGOn the convexity of level-sets of probability functionsJ. Convex Anal.20222921324447930
LuenbergerDGYeYLinear and Nonlinear Programming1984Springer
Vandenberghe, L.: The cvxopt linear and quadratic cone program solvers. http://cvxopt.org/documentation/coneprog.pdf (2010)
LuedtkeJAhmedSA sample approximation approach for optimization with probabilistic constraintsSIAM J. Optim.200819674699242503510.1137/070702928
Lam, S.K., Pitrou, A., Seibert, S.: Numba: A llvm-based python jit compiler. In: Proceedings of the Second Workshop on the LLVM Compiler Infrastructure in HPC, LLVM ’15. Association for Computing Machinery, New York, NY, USA (2015)
NesterovYSmooth minimization of non-smooth functionsMath. Program.20051031127152216653710.1007/s10107-004-0552-5
FacchineiFLamparielloLPartial penalization for the solution of generalized nash equilibrium problemsJ. Global Optim.2011503957278755210.1007/s10898-010-9579-8
YeJJZhuDZhuQJExact penalization and necessary optimality conditions for generalized bilevel programming problemsSIAM J. Optim.199772481507144363010.1137/S1052623493257344
van AckooijWHenrionRMöllerAZorgatiRJoint chance constrained programming for hydro reservoir managementOptim. Eng.2014155093213858
Hiriart-UrrutyJBLemaréchalCConvex analysis and minimization algorithms I: fundamentals2013Springer
Kannan, R., Luedtke, J.: A stochastic approximation method for approximating the efficient frontier of chance-constrained nonlinear programs (2020)
de OliveiraWThe abc of dc programmingSet-Valued Variational Anal.2020284679706416991810.1007/s11228-020-00566-w
Rockafellar, R.T., Royset, J.O.: Superquantiles and their applications to risk, random variables, and regression. In: Theory driven by influential applications. INFORMS (2013)
RuszczyńskiAShapiroAOptimization of convex risk functionsMath. Oper. Res.2006313433452225441710.1287/moor.1050.0186
van AckooijWA discussion of probability functions and constraints from a variational perspectiveSet-Valued Variatl. Anal.2020284585609416991410.1007/s11228-020-00552-2
MedovaEChance-constrained stochastic programming forintegrated services network managementAnn. Oper. Res.199881213230163839710.1023/A:1018901022726
PagnoncelliBKAhmedSShapiroASample average approximation method for chance constrained programming: theory and applicationsJ. Optim. Theory Appl.20091422399416252579910.1007/s10957-009-9523-6
Prékopa, A., Szántai, T.: Flood control reservoir system design using stochastic programming. In: Mathematical programming in use, pp. 138–151. Springer (1978)
DentchevaDPrékopaARuszczynskiAConcavity and efficient points of discrete distributions in probabilistic programmingMath. Programm.200089155179505710.1007/PL00011393
BaQPangJSExact penalization of generalized nash equilibrium problemsOper. Res.202270314481464445104710.1287/opre.2019.1942
HenrionRStrugarekCConvexity of chance constraints with independent random variablesComput. Optim. Appl.200841263276244789610.1007/s10589-007-9105-1
van AckooijWHenrionRMöllerAZorgatiRJoint chance constrained programming for hydro reservoir managementOptim. Eng.20141525095313213858
BurkeJVFerrisMCWeak sharp minima in mathematical programmingSIAM J. Control. Optim.199331513401359123400610.1137/0331063
JiangNXieWAlso-x and also-x+: better convex approximations for chance constrained programsOper. Res.202270635813600453853410.1287/opre.2021.2225
Peña-OrdieresALuedtkeJRWächterASolving chance-constrained problems via a smooth sample-based nonlinear approximationSIAM J. Optim.202030322212250413403710.1137/19M1261985
RockafellarRTUryasevSOptimization of conditional value-at-riskJ. Risk20002214210.21314/JOR.2000.038
HongLJYangYZhangLSequential convex approximations to joint chance constrained programs: a monte carlo approachOper. Res.2011593617284854210.1287/opre.1100.0910
ChowYGhavamzadehMJansonLPavoneMRisk-constrained reinforcement learning with percentile risk criteriaJ. Mach. Learn. Res.2017181607061203813816
Kröger, O., Coffrin, C., Hijazi, H., Nagarajan, H.: Juniper: An open-source nonlinear branch-and-bound solver in julia. In: Integration of Constraint Programming, Artificial Intelligence, and Operations Research. Springer International Publishing (2018)
Ahmed, S., Shapiro, A.: Solving chance-constrained stochastic programs via sampling and integer programming. In: State-of-the-art decision-making tools in the information-intensive age, pp. 261–269. Informs (2008)
Prékopa, A.: Stochastic Programming. Kluwer, Dordrecht (1995). https://doi.org/10.1007/978-94-017-3087-7
Ben-TalATeboulleMAn old-new concept of convex risk measures: the optimized certainty equivalentMath. Financ.2007173449476233226510.1111/j.1467-9965.2007.00311.x
de OliveiraWProximal bundle methods for nonsmooth dc programmingJ. Glob. Optim.201975523401243810.1007/s10898-019-00755-4
Dentcheva, D.: Optimization models with probabilistic constraints. In: Probabilistic and randomized methods for design under uncertainty, pp. 49–97. Springer (2006)
NemirovskiAShapiroAConvex approximations of chance constrained programsSIAM J. Optim.2006174969996227450010.1137/050622328
CharnesACooperWWChance-constrained programmingManag. Sci.195961737914847810.1287/mnsc.6.1.73
A Ruszczyński (573_CR36) 2006; 31
Y Nesterov (573_CR28) 2005; 103
573_CR8
A Peña-Ordieres (573_CR30) 2020; 30
Y Chow (573_CR7) 2017; 18
573_CR32
573_CR1
573_CR11
573_CR33
573_CR31
W van Ackooij (573_CR39) 2014; 15
A Nemirovski (573_CR27) 2006; 17
Y Laguel (573_CR22) 2022; 29
E Medova (573_CR26) 1998; 81
JB Hiriart-Urruty (573_CR16) 2013
R Henrion (573_CR15) 2008; 41
Q Ba (573_CR2) 2022; 70
LJ Hong (573_CR17) 2011; 59
W van Ackooij (573_CR37) 2020; 28
A Ben-Tal (573_CR3) 2007; 17
BK Pagnoncelli (573_CR29) 2009; 142
A Charnes (573_CR6) 1959; 6
J Luedtke (573_CR24) 2008; 19
JJ Ye (573_CR41) 1997; 7
RT Rockafellar (573_CR34) 2014; 148
F Facchinei (573_CR13) 2011; 50
JV Burke (573_CR4) 1993; 31
573_CR23
H Föllmer (573_CR14) 2002; 6
573_CR21
RT Rockafellar (573_CR35) 2000; 2
573_CR20
GC Calafiore (573_CR5) 2006; 51
573_CR40
DG Luenberger (573_CR25) 1984
D Dentcheva (573_CR12) 2000; 89
573_CR19
N Jiang (573_CR18) 2022; 70
W van Ackooij (573_CR38) 2014; 15
W de Oliveira (573_CR10) 2020; 28
W de Oliveira (573_CR9) 2019; 75
References_xml – reference: NemirovskiAShapiroAConvex approximations of chance constrained programsSIAM J. Optim.2006174969996227450010.1137/050622328
– reference: Ahmed, S., Shapiro, A.: Solving chance-constrained stochastic programs via sampling and integer programming. In: State-of-the-art decision-making tools in the information-intensive age, pp. 261–269. Informs (2008)
– reference: NesterovYSmooth minimization of non-smooth functionsMath. Program.20051031127152216653710.1007/s10107-004-0552-5
– reference: Ben-TalATeboulleMAn old-new concept of convex risk measures: the optimized certainty equivalentMath. Financ.2007173449476233226510.1111/j.1467-9965.2007.00311.x
– reference: BaQPangJSExact penalization of generalized nash equilibrium problemsOper. Res.202270314481464445104710.1287/opre.2019.1942
– reference: Clarke, F.H.: Optimization and nonsmooth analysis, vol. 5. Siam (1990)
– reference: RockafellarRTUryasevSOptimization of conditional value-at-riskJ. Risk20002214210.21314/JOR.2000.038
– reference: JiangNXieWAlso-x and also-x+: better convex approximations for chance constrained programsOper. Res.202270635813600453853410.1287/opre.2021.2225
– reference: Kröger, O., Coffrin, C., Hijazi, H., Nagarajan, H.: Juniper: An open-source nonlinear branch-and-bound solver in julia. In: Integration of Constraint Programming, Artificial Intelligence, and Operations Research. Springer International Publishing (2018)
– reference: Laguel, Y., Malick, J., Harchaoui, Z.: First-order optimization for superquantile-based supervised learning. In: 2020 IEEE 30th International Workshop on Machine Learning for Signal Processing (MLSP), pp. 1–6. IEEE (2020)
– reference: Prékopa, A.: Stochastic Programming. Kluwer, Dordrecht (1995). https://doi.org/10.1007/978-94-017-3087-7
– reference: LaguelYvan AckooijWMalickJMatiussi RamalhoGOn the convexity of level-sets of probability functionsJ. Convex Anal.20222921324447930
– reference: Rockafellar, R.T., Royset, J.O.: Superquantiles and their applications to risk, random variables, and regression. In: Theory driven by influential applications. INFORMS (2013)
– reference: Prékopa, A., Szántai, T.: Flood control reservoir system design using stochastic programming. In: Mathematical programming in use, pp. 138–151. Springer (1978)
– reference: HongLJYangYZhangLSequential convex approximations to joint chance constrained programs: a monte carlo approachOper. Res.2011593617284854210.1287/opre.1100.0910
– reference: CalafioreGCCampiMCThe scenario approach to robust control designIEEE Trans. Autom. Control2006515742753223259710.1109/TAC.2006.875041
– reference: MedovaEChance-constrained stochastic programming forintegrated services network managementAnn. Oper. Res.199881213230163839710.1023/A:1018901022726
– reference: LuenbergerDGYeYLinear and Nonlinear Programming1984Springer
– reference: Peña-OrdieresALuedtkeJRWächterASolving chance-constrained problems via a smooth sample-based nonlinear approximationSIAM J. Optim.202030322212250413403710.1137/19M1261985
– reference: LuedtkeJAhmedSA sample approximation approach for optimization with probabilistic constraintsSIAM J. Optim.200819674699242503510.1137/070702928
– reference: van AckooijWHenrionRMöllerAZorgatiRJoint chance constrained programming for hydro reservoir managementOptim. Eng.20141525095313213858
– reference: RockafellarRTRoysetJORandom variables, monotone relations, and convex analysisMath. Program.20141481–2297331327485410.1007/s10107-014-0801-1
– reference: RuszczyńskiAShapiroAOptimization of convex risk functionsMath. Oper. Res.2006313433452225441710.1287/moor.1050.0186
– reference: de OliveiraWThe abc of dc programmingSet-Valued Variational Anal.2020284679706416991810.1007/s11228-020-00566-w
– reference: DentchevaDPrékopaARuszczynskiAConcavity and efficient points of discrete distributions in probabilistic programmingMath. Programm.200089155179505710.1007/PL00011393
– reference: Lam, S.K., Pitrou, A., Seibert, S.: Numba: A llvm-based python jit compiler. In: Proceedings of the Second Workshop on the LLVM Compiler Infrastructure in HPC, LLVM ’15. Association for Computing Machinery, New York, NY, USA (2015)
– reference: van AckooijWA discussion of probability functions and constraints from a variational perspectiveSet-Valued Variatl. Anal.2020284585609416991410.1007/s11228-020-00552-2
– reference: BurkeJVFerrisMCWeak sharp minima in mathematical programmingSIAM J. Control. Optim.199331513401359123400610.1137/0331063
– reference: CharnesACooperWWChance-constrained programmingManag. Sci.195961737914847810.1287/mnsc.6.1.73
– reference: Hiriart-UrrutyJBLemaréchalCConvex analysis and minimization algorithms I: fundamentals2013Springer
– reference: de OliveiraWProximal bundle methods for nonsmooth dc programmingJ. Glob. Optim.201975523401243810.1007/s10898-019-00755-4
– reference: FöllmerHSchiedAConvex measures of risk and trading constraintsFinanc. Stochast.200264429447193237910.1007/s007800200072
– reference: FacchineiFLamparielloLPartial penalization for the solution of generalized nash equilibrium problemsJ. Global Optim.2011503957278755210.1007/s10898-010-9579-8
– reference: ChowYGhavamzadehMJansonLPavoneMRisk-constrained reinforcement learning with percentile risk criteriaJ. Mach. Learn. Res.2017181607061203813816
– reference: Kannan, R., Luedtke, J.: A stochastic approximation method for approximating the efficient frontier of chance-constrained nonlinear programs (2020)
– reference: Vandenberghe, L.: The cvxopt linear and quadratic cone program solvers. http://cvxopt.org/documentation/coneprog.pdf (2010)
– reference: YeJJZhuDZhuQJExact penalization and necessary optimality conditions for generalized bilevel programming problemsSIAM J. Optim.199772481507144363010.1137/S1052623493257344
– reference: PagnoncelliBKAhmedSShapiroASample average approximation method for chance constrained programming: theory and applicationsJ. Optim. Theory Appl.20091422399416252579910.1007/s10957-009-9523-6
– reference: HenrionRStrugarekCConvexity of chance constraints with independent random variablesComput. Optim. Appl.200841263276244789610.1007/s10589-007-9105-1
– reference: van AckooijWHenrionRMöllerAZorgatiRJoint chance constrained programming for hydro reservoir managementOptim. Eng.2014155093213858
– reference: Dentcheva, D.: Optimization models with probabilistic constraints. In: Probabilistic and randomized methods for design under uncertainty, pp. 49–97. Springer (2006)
– volume: 19
  start-page: 674
  year: 2008
  ident: 573_CR24
  publication-title: SIAM J. Optim.
  doi: 10.1137/070702928
– volume: 142
  start-page: 399
  issue: 2
  year: 2009
  ident: 573_CR29
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-009-9523-6
– volume: 28
  start-page: 585
  issue: 4
  year: 2020
  ident: 573_CR37
  publication-title: Set-Valued Variatl. Anal.
  doi: 10.1007/s11228-020-00552-2
– ident: 573_CR31
  doi: 10.1007/BFb0120831
– ident: 573_CR33
  doi: 10.1287/educ.2013.0111
– volume: 15
  start-page: 509
  issue: 2
  year: 2014
  ident: 573_CR38
  publication-title: Optim. Eng.
– ident: 573_CR40
– ident: 573_CR1
  doi: 10.1287/educ.1080.0048
– volume: 28
  start-page: 679
  issue: 4
  year: 2020
  ident: 573_CR10
  publication-title: Set-Valued Variational Anal.
  doi: 10.1007/s11228-020-00566-w
– volume: 103
  start-page: 127
  issue: 1
  year: 2005
  ident: 573_CR28
  publication-title: Math. Program.
  doi: 10.1007/s10107-004-0552-5
– ident: 573_CR20
  doi: 10.1007/978-3-319-93031-2_27
– volume: 75
  start-page: 523
  year: 2019
  ident: 573_CR9
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-019-00755-4
– volume: 6
  start-page: 429
  issue: 4
  year: 2002
  ident: 573_CR14
  publication-title: Financ. Stochast.
  doi: 10.1007/s007800200072
– ident: 573_CR8
  doi: 10.1137/1.9781611971309
– volume: 18
  start-page: 6070
  issue: 1
  year: 2017
  ident: 573_CR7
  publication-title: J. Mach. Learn. Res.
– volume: 81
  start-page: 213
  year: 1998
  ident: 573_CR26
  publication-title: Ann. Oper. Res.
  doi: 10.1023/A:1018901022726
– volume: 50
  start-page: 39
  year: 2011
  ident: 573_CR13
  publication-title: J. Global Optim.
  doi: 10.1007/s10898-010-9579-8
– volume: 70
  start-page: 3581
  issue: 6
  year: 2022
  ident: 573_CR18
  publication-title: Oper. Res.
  doi: 10.1287/opre.2021.2225
– volume: 29
  start-page: 1
  issue: 2
  year: 2022
  ident: 573_CR22
  publication-title: J. Convex Anal.
– ident: 573_CR11
  doi: 10.1007/1-84628-095-8_2
– volume: 6
  start-page: 73
  issue: 1
  year: 1959
  ident: 573_CR6
  publication-title: Manag. Sci.
  doi: 10.1287/mnsc.6.1.73
– volume: 89
  start-page: 55
  issue: 1
  year: 2000
  ident: 573_CR12
  publication-title: Math. Programm.
  doi: 10.1007/PL00011393
– volume: 31
  start-page: 433
  issue: 3
  year: 2006
  ident: 573_CR36
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.1050.0186
– volume: 70
  start-page: 1448
  issue: 3
  year: 2022
  ident: 573_CR2
  publication-title: Oper. Res.
  doi: 10.1287/opre.2019.1942
– volume-title: Convex analysis and minimization algorithms I: fundamentals
  year: 2013
  ident: 573_CR16
– volume: 148
  start-page: 297
  issue: 1–2
  year: 2014
  ident: 573_CR34
  publication-title: Math. Program.
  doi: 10.1007/s10107-014-0801-1
– ident: 573_CR19
  doi: 10.1007/s12532-020-00199-y
– volume: 17
  start-page: 969
  issue: 4
  year: 2006
  ident: 573_CR27
  publication-title: SIAM J. Optim.
  doi: 10.1137/050622328
– volume: 15
  start-page: 509
  year: 2014
  ident: 573_CR39
  publication-title: Optim. Eng.
– ident: 573_CR21
  doi: 10.1109/MLSP49062.2020.9231909
– volume: 51
  start-page: 742
  issue: 5
  year: 2006
  ident: 573_CR5
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2006.875041
– volume: 59
  start-page: 617
  issue: 3
  year: 2011
  ident: 573_CR17
  publication-title: Oper. Res.
  doi: 10.1287/opre.1100.0910
– volume: 31
  start-page: 1340
  issue: 5
  year: 1993
  ident: 573_CR4
  publication-title: SIAM J. Control. Optim.
  doi: 10.1137/0331063
– volume: 17
  start-page: 449
  issue: 3
  year: 2007
  ident: 573_CR3
  publication-title: Math. Financ.
  doi: 10.1111/j.1467-9965.2007.00311.x
– ident: 573_CR23
  doi: 10.1145/2833157.2833162
– volume: 30
  start-page: 2221
  issue: 3
  year: 2020
  ident: 573_CR30
  publication-title: SIAM J. Optim.
  doi: 10.1137/19M1261985
– volume: 7
  start-page: 481
  issue: 2
  year: 1997
  ident: 573_CR41
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623493257344
– volume: 2
  start-page: 21
  year: 2000
  ident: 573_CR35
  publication-title: J. Risk
  doi: 10.21314/JOR.2000.038
– volume-title: Linear and Nonlinear Programming
  year: 1984
  ident: 573_CR25
– volume: 41
  start-page: 263
  year: 2008
  ident: 573_CR15
  publication-title: Comput. Optim. Appl.
  doi: 10.1007/s10589-007-9105-1
– ident: 573_CR32
  doi: 10.1007/978-94-017-3087-7
SSID ssj0009732
Score 2.3904955
Snippet Chance constraints are a valuable tool for the design of safe decisions in uncertain environments; they are used to model satisfaction of a constraint with a...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 819
SubjectTerms Algorithms
Approximation
Constraints
Convex analysis
Convex and Discrete Geometry
Convexity
Management Science
Mathematics
Mathematics and Statistics
Operations Research
Operations Research/Decision Theory
Optimization
Random variables
Smoothness
Statistics
SummonAdditionalLinks – databaseName: Computer Science Database
  dbid: K7-
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA6-DnrwLa4vcvCmwT6SpvEiIoqgiAcFbyWZJiKsu-vuuvjzzcTUqqAXz01C228yMyTzfUPIfuEg00po5qTOkZKTM51yxwoufbQF5dP-oK5_LW9uyocHdRsP3EaxrLLxicFR133AM_IjTG2TXAnFTwYvDLtG4e1qbKExTWbTLEvRzq8ka0V3ZWhQlqisYD6w55E0E6lzAouFMs6CJiBT3wNTm23-uCANcedi6b9vvEwWY8ZJTz9MZIVM2d4qWfiiQ7hGHpFjAJYBJovYM8LWNBZujSie1NJQnP5GkXE27CIzimJADDZ7TDU13rdMbLcZ1vd-6DkSPOmgpXOuk_uL87uzSxY7MDDwW3PMlALwCZCxLtUGNGhTGuBGlqKsc8G9LzAJAJRccZc4WdZCOCVNlhmtecoh3yAzvX7PbhJaOCt5kdiiFo5b4XSZJ2Bqp7WQqTeXDkmb319BlCfHL-5WrbAyQlZ5yKoAWeXnHHzOGXyIc_w5eqfBqYobdVS1IHXIYYN0-_j31bb-Xm2bzGfBuLCwd4fMjIevdpfMwWT8NBruBTN9By_s7yg
  priority: 102
  providerName: ProQuest
Title Chance-constrained programs with convex underlying functions: a bilevel convex optimization perspective
URI https://link.springer.com/article/10.1007/s10589-024-00573-9
https://www.proquest.com/docview/3067039594
Volume 88
WOSCitedRecordID wos001208824000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ABI/INFORM Global
  customDbUrl:
  eissn: 1573-2894
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0009732
  issn: 0926-6003
  databaseCode: M0C
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/abiglobal
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1573-2894
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0009732
  issn: 0926-6003
  databaseCode: P5Z
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1573-2894
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0009732
  issn: 0926-6003
  databaseCode: K7-
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1573-2894
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0009732
  issn: 0926-6003
  databaseCode: M7S
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest ABI/INFORM Collection
  customDbUrl:
  eissn: 1573-2894
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0009732
  issn: 0926-6003
  databaseCode: 7WY
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/abicomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1573-2894
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0009732
  issn: 0926-6003
  databaseCode: BENPR
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1573-2894
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0009732
  issn: 0926-6003
  databaseCode: M2P
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK
  customDbUrl:
  eissn: 1573-2894
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009732
  issn: 0926-6003
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7RlkM5FCggWsrKB25gKQ87jrm1VSsk6GrV8ihcInti97Jsq9226s9nxps0BQESXEayYkeJZzwzief7DPCqilg4q52MxpUMySmly1WUlTIUbdFS2p_Y9T-Y8bg-PbWTDhS26Kvd-y3J5KnvgN00l_cUSiYWP2lXYI3CXc3L8fjk80C1a9KxZJktKknhvOygMr-_x8_haMgxf9kWTdHm8OH_Pecj2OiyS7G7NIfHcC_MNuHBHc5Bah3dErUuNmGdk80lV_MTOGOoAQaJnDPy0RGhFV391kLwD1uRatRvBAPP5lMGSAmOi8l03wonPLmY6zDtu52TO_re4TzFxYDqfAqfDg8-7r-T3UEMEmmFXkprESkP8iHmzqND52uPypta122pFbkEnyFirayKWTR1q3W0xheFd07lCstnsDo7n4XnIKoYjKqyULU6qqCjq8sMfRud0yYnq9mCvNdHgx1LOb_xtBn4lXl-G5rfJs1vQ2Ne3465WHJ0_LX3Tq_mpluvi4Y_nLLSaqu24E2v1uHyn--2_W_dX8B6kSyD6313YPVyfhVewn28JlXPR7BivnwdwdrewXhyTK33RpI8yvZZFhOW5oTkRH8bJZv_Afxt9ZA
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB6lBanlwKugBgL4ACewug97vUZCCBWqVg0Rh1bqbWvP2ggpTdIkFPhT_EY8zi4LleitB85rW_LuN4-15_sG4HnhMTNaGu6VyYmSk3OTCs8LoUK0RR3S_qiuP1SjUXlyoj_14GfLhaGyytYnRkddT5HOyHcotU1yLbV4Ozvn1DWKblfbFhorWBy6H9_CL9vizcH78H1fZNneh6Pdfd50FeAY4LbkWiOGoG6dT41Fg8aWFoVVpSzrXIqAb5sgYim08IlXZS2l18pmmTVGpALzsO4a3BAimAOVCia7ncivig3REp0VPCQSeUPSaah6koqTMsGjBiHXfwfCLru9dCEb49zenf_tDd2F201Gzd6tTOAe9NzkPtz6Q2dxCz4ThwIdR0qGqSeGq1lTmLZgdBLNYvH9d0aMuvmYmF-MAn60ydfMMBt854Ubt8Omwc-eNQRWNuvoqg_g-Fp2-hDWJ9OJ2wZWeKdEkbiill446U2ZJ2hrb4xUaTCHPqTt566wkV-nHY-rTjiaIFIFiFQRIlWY8_L3nNlKfOTK0YMWF1XjiBZVB4o-vGqR1T3-92qPrl7tGWzsH30cVsOD0eFj2MwisKmIeQDry_lX9wRu4sXyy2L-NJoIg9PrRtwvLVROrQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VFiE4tHyKQgs-wAms5sOOY6QKoZYV1VarHkDqLdgTGyEtu8vuUuCv8evweB1CkdpbD5xjW3LyZubFnjcD8KzyWBgtDffKlCTJKbnJheeVUCHaog60P1bXP1ajUX16qk_W4FenhaG0ys4nRkfdTpHOyPeI2malllrs-ZQWcXI4eD37yqmDFN20du00VhAZup_fw-_bYv_oMHzr50UxePv-4B1PHQY4BugtudaIIcBb53Nj0aCxtUVhVS3rtpQiYN1miFgLLXzmVd1K6bWyRWGNEbnAMqx7DTZCFJZkY0PF-4K_KjZHy3RR8UAqyiTYSbI9SYlKheCxHiHX54Niz3T_uZyNMW-w9T-_rduwmZg2e7MyjTuw5iZ34dZf9RfvwSfSVqDjSCSZemW4lqWEtQWjE2oWk_J_MFLazcekCGNEBKKtvmKG2eBTz9y4GzYN_vdLErayWS9jvQ8frmSnD2B9Mp24h8Aq75SoMle10gsnvanLDG3rjZEqD2ayDXn36RtMZdlpx-OmLyhNcGkCXJoIlybMefFnzmxVlOTS0TsdRprkoBZND5BteNmhrH988WqPLl_tKdwIQGuOj0bDx3CziBin3OYdWF_Ov7lduI5ny8-L-ZNoLQw-XjXgfgNzHldT
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chance-constrained+programs+with+convex+underlying+functions%3A+a+bilevel+convex+optimization+perspective&rft.jtitle=Computational+optimization+and+applications&rft.au=Laguel%2C+Yassine&rft.au=Malick%2C+J%C3%A9r%C3%B4me&rft.au=van+Ackooij%2C+Wim&rft.date=2024-07-01&rft.pub=Springer+US&rft.issn=0926-6003&rft.eissn=1573-2894&rft.volume=88&rft.issue=3&rft.spage=819&rft.epage=847&rft_id=info:doi/10.1007%2Fs10589-024-00573-9&rft.externalDocID=10_1007_s10589_024_00573_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-6003&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-6003&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-6003&client=summon