Chance-constrained programs with convex underlying functions: a bilevel convex optimization perspective
Chance constraints are a valuable tool for the design of safe decisions in uncertain environments; they are used to model satisfaction of a constraint with a target probability. However, because of possible non-convexity and non-smoothness, optimizing over a chance constrained set is challenging. In...
Gespeichert in:
| Veröffentlicht in: | Computational optimization and applications Jg. 88; H. 3; S. 819 - 847 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
Springer US
01.07.2024
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 0926-6003, 1573-2894 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | Chance constraints are a valuable tool for the design of safe decisions in uncertain environments; they are used to model satisfaction of a constraint with a target probability. However, because of possible non-convexity and non-smoothness, optimizing over a chance constrained set is challenging. In this paper, we consider chance constrained programs where the objective function and the constraints are convex with respect to the decision parameter. We establish an exact reformulation of such a problem as a bilevel problem with a convex lower-level. Then we leverage this bilevel formulation to propose a tractable penalty approach, in the setting of finitely supported random variables. The penalized objective is a difference-of-convex function that we minimize with a suitable bundle algorithm. We release an easy-to-use open-source python toolbox implementing the approach, with a special emphasis on fast computational subroutines. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0926-6003 1573-2894 |
| DOI: | 10.1007/s10589-024-00573-9 |