Highly computationally efficient parameter estimation algorithms for a class of nonlinear multivariable systems by utilizing the state estimates

This paper investigates the parameter estimation issue for an input nonlinear multivariable state-space system. First, the canonical form of the input nonlinear multivariable state-space system is obtained through the linear transformation and the over-parameterization identification model of the co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear dynamics Jg. 111; H. 9; S. 8477 - 8496
Hauptverfasser: Cui, Ting, Ding, Feng
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Dordrecht Springer Netherlands 01.05.2023
Springer Nature B.V
Schlagworte:
ISSN:0924-090X, 1573-269X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper investigates the parameter estimation issue for an input nonlinear multivariable state-space system. First, the canonical form of the input nonlinear multivariable state-space system is obtained through the linear transformation and the over-parameterization identification model of the considered system is derived. Second, by cutting down the redundant parameter estimates and extracting the unique parameter estimates from the parameter estimation vector in the least-squares identification method, we present an over-parameterization-based partially coupled average recursive extended least-squares parameter estimation algorithm to estimate the parameters. As for the unknown states in the parameter estimation algorithm, a new state estimator is designed to generate the state estimates. Third, in order to improve the computational efficiency of the parameter estimation algorithm, an over-parameterization-based multi-stage partially coupled average recursive extended least-squares algorithm is proposed. Finally, the computational efficiency analysis and the simulation examples are given to verify the effectiveness of the proposed algorithms.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0924-090X
1573-269X
DOI:10.1007/s11071-023-08259-3