A randomized approximation algorithm for metric triangle packing
Given an edge-weighted complete graph G on 3 n vertices, the maximum-weight triangle packing problem asks for a collection of n vertex-disjoint triangles in G such that the total weight of edges in these n triangles is maximized. Although the problem has been extensively studied in the literature, i...
Gespeichert in:
| Veröffentlicht in: | Journal of combinatorial optimization Jg. 41; H. 1; S. 12 - 27 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
Springer US
01.01.2021
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 1382-6905, 1573-2886 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | Given an edge-weighted complete graph
G
on 3
n
vertices, the maximum-weight triangle packing problem asks for a collection of
n
vertex-disjoint triangles in
G
such that the total weight of edges in these
n
triangles is maximized. Although the problem has been extensively studied in the literature, it is surprising that prior to this work, no nontrivial approximation algorithm had been designed and analyzed for its metric case, where the edge weights in the input graph satisfy the triangle inequality. In this paper, we design the first nontrivial polynomial-time approximation algorithm for the maximum-weight metric triangle packing problem. Our algorithm is randomized and achieves an expected approximation ratio of
0.66768
-
ϵ
for any constant
ϵ
>
0
. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1382-6905 1573-2886 |
| DOI: | 10.1007/s10878-020-00660-7 |