A non-sequential refinement approach to improve word embeddings using GPU-based string matching algorithms

Unlike other word embedding models that learn word vectors for a collection of words sequentially, this paper proposes a non-sequential refinement approach to improve the vectors of particular words non-sequentially using a string matching algorithm to speed up the process. The key idea is to change...

Full description

Saved in:
Bibliographic Details
Published in:Cluster computing Vol. 24; no. 4; pp. 3123 - 3134
Main Authors: Naderalvojoud, Behzad, Ozsoy, Adnan
Format: Journal Article
Language:English
Published: New York Springer US 01.12.2021
Springer Nature B.V
Subjects:
ISSN:1386-7857, 1573-7543
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Unlike other word embedding models that learn word vectors for a collection of words sequentially, this paper proposes a non-sequential refinement approach to improve the vectors of particular words non-sequentially using a string matching algorithm to speed up the process. The key idea is to change the order of training in the embedding learning model and force it to learn the vector of a particular word completely before skipping to other target words. The learned vector of the given word and its context vectors are then used to train other target words. In this case, later words can be trained by the word vectors that are more accurate. In this study, the effect of training order in the Skip-gram model is investigated and a quantitative and qualitative comparison is made between the learned vectors in the word similarity task. To speed up the process, a GPU based string matching algorithm is used to find the occurrences of the given word in the training corpus. Incorporating the GPU-based string matching algorithm into the Skip-gram model to refine particular word vectors is, to our best knowledge, the first use case in the literature. Additionally, we provide in-depth analysis of GPU parallelization and identification of string matching algorithms that are suitable for integrating into word embedding models.
AbstractList Unlike other word embedding models that learn word vectors for a collection of words sequentially, this paper proposes a non-sequential refinement approach to improve the vectors of particular words non-sequentially using a string matching algorithm to speed up the process. The key idea is to change the order of training in the embedding learning model and force it to learn the vector of a particular word completely before skipping to other target words. The learned vector of the given word and its context vectors are then used to train other target words. In this case, later words can be trained by the word vectors that are more accurate. In this study, the effect of training order in the Skip-gram model is investigated and a quantitative and qualitative comparison is made between the learned vectors in the word similarity task. To speed up the process, a GPU based string matching algorithm is used to find the occurrences of the given word in the training corpus. Incorporating the GPU-based string matching algorithm into the Skip-gram model to refine particular word vectors is, to our best knowledge, the first use case in the literature. Additionally, we provide in-depth analysis of GPU parallelization and identification of string matching algorithms that are suitable for integrating into word embedding models.
Author Naderalvojoud, Behzad
Ozsoy, Adnan
Author_xml – sequence: 1
  givenname: Behzad
  orcidid: 0000-0003-4429-5341
  surname: Naderalvojoud
  fullname: Naderalvojoud, Behzad
  email: n.behzad@hacettepe.edu.tr
  organization: Department of Computer Engineering, Hacettepe University
– sequence: 2
  givenname: Adnan
  surname: Ozsoy
  fullname: Ozsoy, Adnan
  organization: Department of Computer Engineering, Hacettepe University
BookMark eNp9kEFPwyAUx4mZidv0C3gi8VyFAi0cl0WniYke3JnQQjeWtlRgGr-91JqYeNiF93_wfo_3_gsw611vALjG6BYjVN4FjBgvMpTjDBGSTnoG5piVJCsZJbOkSXouOSsvwCKEA0JIlLmYg8MKplZZMO9H00erWuhNY3vTpQyqYfBO1XsYHbRd0h8Gfjqvoekqo7XtdwEeQwpw87rNKhWMhiH68aJTsd6PQrU7523cd-ESnDeqDebqNy7B9uH-bf2YPb9sntar56wmWMRMFIKSWhUCKYpF0yiFMWWsoIpWmnFaippqzRHJG0qNYTmuuVZaG8xRhVFFluBm6psGTluFKA_u6Pv0pcwF5jkrcElTVT5V1d6FkJaWg7ed8l8SIzl6KidPZfJU_ngqR4j_g2obVbSuj17Z9jRKJjQMo0HG_011gvoGvlSOnw
CitedBy_id crossref_primary_10_1007_s00500_023_08687_8
Cites_doi 10.1371/journal.pone.0200912
10.1016/j.neucom.2020.03.094
10.1007/s10586-016-0649-7
10.1109/ACCESS.2019.2914071
10.1613/jair.4135
10.1145/361219.361220
10.1109/TPDS.2016.2645222
10.22452/mjcs.vol31no3.3
10.1080/01690969108406936
10.11591/ijeecs.v5.i2.pp462-471
10.1145/2431211.2431212
10.1145/365628.365657
10.1136/jamia.2000.0070378
10.1145/503104.503110
10.1007/978-3-319-99007-1_24
10.18653/v1/N18-1202
10.1109/PCI.2009.47
10.1007/978-981-13-7561-3_21
10.1007/s11227-019-03024-z
10.1145/1390156.1390177
10.1007/978-3-642-19137-4_3
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.1007/s10586-021-03321-4
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Advanced Technologies & Aerospace Collection
Database_xml – sequence: 1
  dbid: P5Z
  name: Advanced Technologies & Aerospace Database
  url: https://search.proquest.com/hightechjournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-7543
EndPage 3134
ExternalDocumentID 10_1007_s10586_021_03321_4
GrantInformation_xml – fundername: Türkiye Bilimsel ve Teknolojik Araştirma Kurumu (TR)
  grantid: 117E142
GroupedDBID -59
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
203
29B
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OVD
P9O
PF0
PT4
PT5
QOS
R89
R9I
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z7Z
Z81
Z83
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABRTQ
ADHKG
ADKFA
AFDZB
AFFHD
AFOHR
AGQPQ
AHPBZ
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c319t-96943ca690a419ffaa1145564a4bd58479c4dd8032f44ee521c8dadde180b10b3
IEDL.DBID RSV
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000659409300004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1386-7857
IngestDate Mon Dec 01 09:10:47 EST 2025
Sat Nov 29 05:40:16 EST 2025
Tue Nov 18 22:26:01 EST 2025
Fri Feb 21 02:47:43 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Word embedding
Semantic model
String matching
GPGPU
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-96943ca690a419ffaa1145564a4bd58479c4dd8032f44ee521c8dadde180b10b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4429-5341
PQID 2918256174
PQPubID 2043865
PageCount 12
ParticipantIDs proquest_journals_2918256174
crossref_primary_10_1007_s10586_021_03321_4
crossref_citationtrail_10_1007_s10586_021_03321_4
springer_journals_10_1007_s10586_021_03321_4
PublicationCentury 2000
PublicationDate 20211200
2021-12-00
20211201
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 20211200
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle The Journal of Networks, Software Tools and Applications
PublicationTitle Cluster computing
PublicationTitleAbbrev Cluster Comput
PublicationYear 2021
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Lovis, Baud (CR28) 2000; 7
CR19
CR17
CR15
CR14
CR36
CR13
CR35
Mitani, Ino, Hagihara (CR10) 2017; 28
Faro, Lecroq (CR20) 2013; 45
Leonardo, Hansun (CR26) 2017; 5
CR34
CR11
CR33
CR32
Finkelstein, Gabrilovich, Matias, Rivlin, Solan, Wolfman, Ruppin (CR39) 2002; 20
CR31
CR30
Rubenstein, Goodenough (CR37) 1965; 8
Bengio, Ducharme, Vincent, Jauvin (CR2) 2003; 3
CR4
CR3
Hakak, Kamsin, Shivakumara, Gilkar, Khan, Imran (CR21) 2019; 7
CR6
CR5
CR8
Naderalvojoud, Sezer (CR16) 2020; 405
Hakak, Kamsin, Shivakumara, Idris (CR25) 2018; 31
CR7
CR29
CR9
CR27
Jang, Lee, Lee, Shin, Kim, Rim (CR18) 2016; 19
Bruni, Tran, Baroni (CR41) 2014; 49
CR23
CR22
Gutmann, Hyvärinen (CR12) 2012; 13
Salton, Wong, Yang (CR1) 1975; 18
CR40
Hakak, Kamsin, Shivakumara, Idna Idris, Gilkar (CR24) 2018; 13
Miller, Charles (CR38) 1991; 6
3321_CR31
3321_CR30
3321_CR11
3321_CR33
3321_CR32
L Finkelstein (3321_CR39) 2002; 20
J Jang (3321_CR18) 2016; 19
B Naderalvojoud (3321_CR16) 2020; 405
S Faro (3321_CR20) 2013; 45
SI Hakak (3321_CR21) 2019; 7
MU Gutmann (3321_CR12) 2012; 13
GA Miller (3321_CR38) 1991; 6
S Hakak (3321_CR25) 2018; 31
3321_CR17
Y Mitani (3321_CR10) 2017; 28
3321_CR19
3321_CR13
3321_CR35
3321_CR34
3321_CR15
3321_CR14
3321_CR36
3321_CR9
H Rubenstein (3321_CR37) 1965; 8
3321_CR7
3321_CR22
3321_CR8
G Salton (3321_CR1) 1975; 18
3321_CR40
3321_CR5
3321_CR6
B Leonardo (3321_CR26) 2017; 5
Y Bengio (3321_CR2) 2003; 3
3321_CR3
3321_CR4
C Lovis (3321_CR28) 2000; 7
S Hakak (3321_CR24) 2018; 13
3321_CR27
3321_CR29
E Bruni (3321_CR41) 2014; 49
3321_CR23
References_xml – ident: CR22
– volume: 13
  start-page: e0200912
  issue: 7
  year: 2018
  ident: CR24
  article-title: A new split based searching for exact pattern matching for natural texts
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0200912
– ident: CR4
– ident: CR14
– ident: CR30
– ident: CR33
– ident: CR35
– ident: CR6
– ident: CR29
– volume: 405
  start-page: 149
  year: 2020
  ident: CR16
  article-title: Sentiment aware word embeddings using refinement and senti-contextualized learning approach
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.03.094
– ident: CR8
– ident: CR40
– ident: CR27
– volume: 19
  start-page: 2315
  issue: 4
  year: 2016
  ident: CR18
  article-title: A novel density-based clustering method using word embedding features for dialogue intention recognition
  publication-title: Clust. Comput.
  doi: 10.1007/s10586-016-0649-7
– volume: 7
  start-page: 69614
  year: 2019
  ident: CR21
  article-title: Exact string matching algorithms: survey, issues, and future research directions
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2914071
– ident: CR23
– volume: 49
  start-page: 1
  year: 2014
  ident: CR41
  article-title: Multimodal distributional semantics
  publication-title: J. Artif. Intell. Res.
  doi: 10.1613/jair.4135
– ident: CR19
– volume: 13
  start-page: 307
  year: 2012
  ident: CR12
  article-title: Noise-contrastive estimation of unnormalized statistical models, with applications to natural image statistics
  publication-title: J. Mach. Learn. Res.
– volume: 18
  start-page: 613
  issue: 11
  year: 1975
  ident: CR1
  article-title: A vector space model for automatic indexing
  publication-title: Commun. ACM
  doi: 10.1145/361219.361220
– volume: 28
  start-page: 1989
  issue: 7
  year: 2017
  ident: CR10
  article-title: Parallelizing exact and approximate string matching via inclusive scan on a GPU
  publication-title: IEEE Trans. Parallel Distrib. Syst.
  doi: 10.1109/TPDS.2016.2645222
– ident: CR3
– ident: CR15
– ident: CR17
– ident: CR31
– ident: CR13
– volume: 31
  start-page: 200
  issue: 3
  year: 2018
  ident: CR25
  article-title: Partition-based pattern matching approach for efficient retrieval of arabic text
  publication-title: Malays. J. Comput. Sci.
  doi: 10.22452/mjcs.vol31no3.3
– ident: CR11
– ident: CR9
– ident: CR32
– ident: CR34
– volume: 6
  start-page: 1
  issue: 1
  year: 1991
  ident: CR38
  article-title: Contextual correlates of semantic similarity
  publication-title: Lang. Cogn. Process.
  doi: 10.1080/01690969108406936
– volume: 5
  start-page: 462
  issue: 2
  year: 2017
  ident: CR26
  article-title: Text documents plagiarism detection using Rabin-Karp and Jaro-Winkler distance algorithms
  publication-title: Indonesian J. Electr. Eng. Comput. Sci.
  doi: 10.11591/ijeecs.v5.i2.pp462-471
– ident: CR36
– volume: 3
  start-page: 1137
  year: 2003
  ident: CR2
  article-title: A neural probabilistic language model
  publication-title: J. Mach. Learn. Res.
– ident: CR5
– volume: 45
  start-page: 1
  issue: 2
  year: 2013
  ident: CR20
  article-title: The exact online string matching problem: a review of the most recent results
  publication-title: ACM Comput. Surv.
  doi: 10.1145/2431211.2431212
– ident: CR7
– volume: 8
  start-page: 627
  issue: 10
  year: 1965
  ident: CR37
  article-title: Contextual correlates of synonymy
  publication-title: Commun. ACM
  doi: 10.1145/365628.365657
– volume: 7
  start-page: 378
  issue: 4
  year: 2000
  ident: CR28
  article-title: Fast exact string pattern-matching algorithms adapted to the characteristics of the medical language
  publication-title: J. Am. Med. Inform. Assoc.
  doi: 10.1136/jamia.2000.0070378
– volume: 20
  start-page: 116
  issue: 1
  year: 2002
  ident: CR39
  article-title: Placing search in context: the concept revisited
  publication-title: ACM Trans. Inf. Syst.
  doi: 10.1145/503104.503110
– ident: 3321_CR22
  doi: 10.1007/978-3-319-99007-1_24
– volume: 49
  start-page: 1
  year: 2014
  ident: 3321_CR41
  publication-title: J. Artif. Intell. Res.
  doi: 10.1613/jair.4135
– ident: 3321_CR30
– ident: 3321_CR32
– ident: 3321_CR4
  doi: 10.18653/v1/N18-1202
– volume: 13
  start-page: e0200912
  issue: 7
  year: 2018
  ident: 3321_CR24
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0200912
– ident: 3321_CR33
  doi: 10.1109/PCI.2009.47
– ident: 3321_CR23
  doi: 10.1007/978-981-13-7561-3_21
– volume: 6
  start-page: 1
  issue: 1
  year: 1991
  ident: 3321_CR38
  publication-title: Lang. Cogn. Process.
  doi: 10.1080/01690969108406936
– ident: 3321_CR8
– ident: 3321_CR15
  doi: 10.1007/s11227-019-03024-z
– ident: 3321_CR40
– ident: 3321_CR6
– volume: 45
  start-page: 1
  issue: 2
  year: 2013
  ident: 3321_CR20
  publication-title: ACM Comput. Surv.
  doi: 10.1145/2431211.2431212
– ident: 3321_CR36
– ident: 3321_CR17
– ident: 3321_CR13
– volume: 31
  start-page: 200
  issue: 3
  year: 2018
  ident: 3321_CR25
  publication-title: Malays. J. Comput. Sci.
  doi: 10.22452/mjcs.vol31no3.3
– ident: 3321_CR11
– volume: 405
  start-page: 149
  year: 2020
  ident: 3321_CR16
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.03.094
– ident: 3321_CR29
– volume: 28
  start-page: 1989
  issue: 7
  year: 2017
  ident: 3321_CR10
  publication-title: IEEE Trans. Parallel Distrib. Syst.
  doi: 10.1109/TPDS.2016.2645222
– volume: 3
  start-page: 1137
  year: 2003
  ident: 3321_CR2
  publication-title: J. Mach. Learn. Res.
– ident: 3321_CR27
– volume: 19
  start-page: 2315
  issue: 4
  year: 2016
  ident: 3321_CR18
  publication-title: Clust. Comput.
  doi: 10.1007/s10586-016-0649-7
– ident: 3321_CR31
– ident: 3321_CR5
  doi: 10.1145/1390156.1390177
– volume: 20
  start-page: 116
  issue: 1
  year: 2002
  ident: 3321_CR39
  publication-title: ACM Trans. Inf. Syst.
  doi: 10.1145/503104.503110
– volume: 13
  start-page: 307
  year: 2012
  ident: 3321_CR12
  publication-title: J. Mach. Learn. Res.
– ident: 3321_CR19
– ident: 3321_CR35
– volume: 18
  start-page: 613
  issue: 11
  year: 1975
  ident: 3321_CR1
  publication-title: Commun. ACM
  doi: 10.1145/361219.361220
– ident: 3321_CR14
– ident: 3321_CR7
– ident: 3321_CR9
– volume: 8
  start-page: 627
  issue: 10
  year: 1965
  ident: 3321_CR37
  publication-title: Commun. ACM
  doi: 10.1145/365628.365657
– ident: 3321_CR3
– volume: 5
  start-page: 462
  issue: 2
  year: 2017
  ident: 3321_CR26
  publication-title: Indonesian J. Electr. Eng. Comput. Sci.
  doi: 10.11591/ijeecs.v5.i2.pp462-471
– ident: 3321_CR34
  doi: 10.1007/978-3-642-19137-4_3
– volume: 7
  start-page: 69614
  year: 2019
  ident: 3321_CR21
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2914071
– volume: 7
  start-page: 378
  issue: 4
  year: 2000
  ident: 3321_CR28
  publication-title: J. Am. Med. Inform. Assoc.
  doi: 10.1136/jamia.2000.0070378
SSID ssj0009729
Score 2.2370548
Snippet Unlike other word embedding models that learn word vectors for a collection of words sequentially, this paper proposes a non-sequential refinement approach to...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3123
SubjectTerms Algorithms
Computer Communication Networks
Computer Science
Embedding
Hypotheses
Language
Learning
Neural networks
Operating Systems
Probability
Processor Architectures
Semantics
String matching
Training
SummonAdditionalLinks – databaseName: Advanced Technologies & Aerospace Database
  dbid: P5Z
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagMLBQnqJQkAc2sEgaJ3EmVCEKA6o6UKliiRzbKUV90Qb4-9y5DhFIsLBkyMNydL6H787fR8h5GEsFWiNYFMmA8dDzWKZA3VUUcKMVz7WyOLMPcbcrBoOk5xJuS9dWWdpEa6j1TGGO_KqVQCQMzj7m1_NXhqxRWF11FBrrZANREpC6oRc-VaC7sWUp8wMRsViEsTs0447OhQLbb7GhKIAr_-6YqmjzR4HU-p1O_b8z3iHbLuKk7dUS2SVrZrpH6iWbA3XKvU9e2nQ6m7JVbzXo_ZjCHCEGxfQhLaHHaTGjI5uHMPQD9q3UTDKjbf2KYgv9kN71-gxdo6bICAI3ICS2_ZpUjocwveJ5sjwg_c7t4809c0wMTIGKFiyJEh4oCTtpyf0kz6X0EeA84pJnGgutieJaCy9o5ZwbAyGBEhotpy-8zPey4JDU4BfMEaFZlOWIsYP4o5wHLQkmJwYvmkHsqCMRNohfiiFVDqYc2TLGaQWwjKJLQXSpFV3KG-Ti65v5CqTjz7ebpbxSp7DLtBJWg1yWEq8e_z7a8d-jnZCtFi4y2wDTJLVi8WZOyaZ6L0bLxZldrp9eL-92
  priority: 102
  providerName: ProQuest
Title A non-sequential refinement approach to improve word embeddings using GPU-based string matching algorithms
URI https://link.springer.com/article/10.1007/s10586-021-03321-4
https://www.proquest.com/docview/2918256174
Volume 24
WOSCitedRecordID wos000659409300004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1573-7543
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0009729
  issn: 1386-7857
  databaseCode: P5Z
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1573-7543
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0009729
  issn: 1386-7857
  databaseCode: K7-
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1573-7543
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0009729
  issn: 1386-7857
  databaseCode: BENPR
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-7543
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009729
  issn: 1386-7857
  databaseCode: RSV
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT8IwEL8I-uCL-BlRJH3wTZtsrNu6RzSgiYYQFGN8Wbq2QwyIgan_vteyiRo10Zc-rF3TXnu9u971dwCHfigkcg2nQSA8ynzHoYlEdpeBx7SSLFXS4sxehp0Ov72NuvmjsFkR7V64JO1J_eGxm89NwKwJAfKwZCVYRnHHTcKG3tXNAmo3tLnJXA9bh9wP86cy3_fxWRwtdMwvblErbdqV_41zHdZy7ZI059thA5b04yZUiswNJGfkLXhoEjT76TyOGnl8RHBkqG-aq0JSwIyTbEKG9s5Bk1e0UYkeJ1pZXxUx4fIDctbtUyMGFTHZP_ADqr82NpOI0WAyHWb349k29Nut69NzmmddoBLZMaNREDFPCrSaBXOjNBXCNWDmARMsUcapGkmmFHe8RsqY1ij-JVfmlHS5k7hO4u1AGaegd4EkQZIaPB2DNcqY1xB4vIQoMRPUE1XA_Sq4BfFjmUOSm8wYo3gBpmyIGSMxY0vMmFXh6P2fpzkgx6-ta8WaxjlzzuJGhEYV6o0hVh8Xa7io_rm3vb8134fVhtkGNvilBuVs-qwPYEW-ZMPZtA7LJ61Ot1eH0kVIsez6d3W7kd8AoMjopg
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLRJc6AMqFlrwoT2BRRI7sXNAqGoprXa76qGVeguO7ZSi7W7ZDSD-FL-RGW_SqEj01gOXHPKwZPubRzwz3wBsp8pYlBrNs8wILtMo4qVFcbeZkN5ZWTkbeGaHajTS5-f5yRL8bmthKK2y1YlBUbuppTPyd0mOnjAaeyU_XH_j1DWKoqttC40FLAb-10_8ZZu_P9rH_d1JkoOPp3uHvOkqwC3CreZ5lkthDf4VGhnnVWVMTGTdmTSydBQ0zK10TkciqaT0Hs2b1Y60QKyjMo5KgeM-gGUptCK5Gijekfyq0BUtFjrjSqeqKdJpSvVSTem-lMAk8CpvG8LOu_0rIBvs3MHK_7ZCq_Ck8ajZ7kIE1mDJT9Zhpe1WwRrl9RS-7rLJdMIXueOo18YM1wR9bDoeZS21Oqun7DKcs3hGU2D-qvQuxOcYlQhcsE8nZ5xMv2PU8QRvoMsf8lGZGV_gctRfrubP4OxeZrwBPZyCfw6szMqKOISIX1VKkRhUqQq9hBJ9Y5fptA9xu-2FbWjYqRvIuOgIpAkqBUKlCFApZB_e3HxzvSAhufPtzRYfRaOQ5kUHjj68bRHWPf73aC_uHu01PDo8PR4Ww6PR4CU8TgjgIdlnE3r17Lvfgof2R305n70KosLg830j7w9NP0u2
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI5gIMSF8RSDATlwg2p9pK_jBAwQ0zQJhnar0iQdQ3tpK_D3sbOWDgRIiEsPTRqlSZzY8efPhJy6PhcgNYHhedwxmGuaRixA3IXnMCUFS6TQPLNNv9UKut2wvRDFr9HuuUtyHtOALE2jtDaRSW0h8M0NEDyLcCAHnmyZrDAE0qO9fv9Y0O76Ok-Z5UBtP3D9LGzm-zY-H02FvvnFRapPnkb5_33eJBuZ1knr82WyRZbUaJuU84wONBPwHfJcp6PxyJjjq0H2BxR6CXooXiHSnH6cpmPa13cRir6B7UrVMFZS-7Aowuh79LrdMfB4lBSzgsALUIs1ZpPyQW887adPw9ku6TSuHi5ujCwbgyFATFMj9ELmCA7WNGdWmCScW0hy7jHOYonO1lAwKQPTsRPGlAK1QAQSd08rMGPLjJ09UoJfUPuExl6cIM8OcpAy5tgcth0fTtIY9EfpBW6FWPlERCKjKseMGYOoIFnGwYxgMCM9mBGrkLOPbyZzoo5fa1fz-Y0yoZ1FdgjGFuiTPhSf5_NZFP_c2sHfqp-QtfZlI2retu4OybqNK0LjY6qklE5f1BFZFa9pfzY91mv5Hb1p8QQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+non-sequential+refinement+approach+to+improve+word+embeddings+using+GPU-based+string+matching+algorithms&rft.jtitle=Cluster+computing&rft.au=Naderalvojoud%2C+Behzad&rft.au=Ozsoy%2C+Adnan&rft.date=2021-12-01&rft.pub=Springer+US&rft.issn=1386-7857&rft.eissn=1573-7543&rft.volume=24&rft.issue=4&rft.spage=3123&rft.epage=3134&rft_id=info:doi/10.1007%2Fs10586-021-03321-4&rft.externalDocID=10_1007_s10586_021_03321_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1386-7857&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1386-7857&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1386-7857&client=summon