A non-sequential refinement approach to improve word embeddings using GPU-based string matching algorithms
Unlike other word embedding models that learn word vectors for a collection of words sequentially, this paper proposes a non-sequential refinement approach to improve the vectors of particular words non-sequentially using a string matching algorithm to speed up the process. The key idea is to change...
Saved in:
| Published in: | Cluster computing Vol. 24; no. 4; pp. 3123 - 3134 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
Springer US
01.12.2021
Springer Nature B.V |
| Subjects: | |
| ISSN: | 1386-7857, 1573-7543 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Unlike other word embedding models that learn word vectors for a collection of words sequentially, this paper proposes a non-sequential refinement approach to improve the vectors of particular words non-sequentially using a string matching algorithm to speed up the process. The key idea is to change the order of training in the embedding learning model and force it to learn the vector of a particular word completely before skipping to other target words. The learned vector of the given word and its context vectors are then used to train other target words. In this case, later words can be trained by the word vectors that are more accurate. In this study, the effect of training order in the Skip-gram model is investigated and a quantitative and qualitative comparison is made between the learned vectors in the word similarity task. To speed up the process, a GPU based string matching algorithm is used to find the occurrences of the given word in the training corpus. Incorporating the GPU-based string matching algorithm into the Skip-gram model to refine particular word vectors is, to our best knowledge, the first use case in the literature. Additionally, we provide in-depth analysis of GPU parallelization and identification of string matching algorithms that are suitable for integrating into word embedding models. |
|---|---|
| AbstractList | Unlike other word embedding models that learn word vectors for a collection of words sequentially, this paper proposes a non-sequential refinement approach to improve the vectors of particular words non-sequentially using a string matching algorithm to speed up the process. The key idea is to change the order of training in the embedding learning model and force it to learn the vector of a particular word completely before skipping to other target words. The learned vector of the given word and its context vectors are then used to train other target words. In this case, later words can be trained by the word vectors that are more accurate. In this study, the effect of training order in the Skip-gram model is investigated and a quantitative and qualitative comparison is made between the learned vectors in the word similarity task. To speed up the process, a GPU based string matching algorithm is used to find the occurrences of the given word in the training corpus. Incorporating the GPU-based string matching algorithm into the Skip-gram model to refine particular word vectors is, to our best knowledge, the first use case in the literature. Additionally, we provide in-depth analysis of GPU parallelization and identification of string matching algorithms that are suitable for integrating into word embedding models. |
| Author | Naderalvojoud, Behzad Ozsoy, Adnan |
| Author_xml | – sequence: 1 givenname: Behzad orcidid: 0000-0003-4429-5341 surname: Naderalvojoud fullname: Naderalvojoud, Behzad email: n.behzad@hacettepe.edu.tr organization: Department of Computer Engineering, Hacettepe University – sequence: 2 givenname: Adnan surname: Ozsoy fullname: Ozsoy, Adnan organization: Department of Computer Engineering, Hacettepe University |
| BookMark | eNp9kEFPwyAUx4mZidv0C3gi8VyFAi0cl0WniYke3JnQQjeWtlRgGr-91JqYeNiF93_wfo_3_gsw611vALjG6BYjVN4FjBgvMpTjDBGSTnoG5piVJCsZJbOkSXouOSsvwCKEA0JIlLmYg8MKplZZMO9H00erWuhNY3vTpQyqYfBO1XsYHbRd0h8Gfjqvoekqo7XtdwEeQwpw87rNKhWMhiH68aJTsd6PQrU7523cd-ESnDeqDebqNy7B9uH-bf2YPb9sntar56wmWMRMFIKSWhUCKYpF0yiFMWWsoIpWmnFaippqzRHJG0qNYTmuuVZaG8xRhVFFluBm6psGTluFKA_u6Pv0pcwF5jkrcElTVT5V1d6FkJaWg7ed8l8SIzl6KidPZfJU_ngqR4j_g2obVbSuj17Z9jRKJjQMo0HG_011gvoGvlSOnw |
| CitedBy_id | crossref_primary_10_1007_s00500_023_08687_8 |
| Cites_doi | 10.1371/journal.pone.0200912 10.1016/j.neucom.2020.03.094 10.1007/s10586-016-0649-7 10.1109/ACCESS.2019.2914071 10.1613/jair.4135 10.1145/361219.361220 10.1109/TPDS.2016.2645222 10.22452/mjcs.vol31no3.3 10.1080/01690969108406936 10.11591/ijeecs.v5.i2.pp462-471 10.1145/2431211.2431212 10.1145/365628.365657 10.1136/jamia.2000.0070378 10.1145/503104.503110 10.1007/978-3-319-99007-1_24 10.18653/v1/N18-1202 10.1109/PCI.2009.47 10.1007/978-981-13-7561-3_21 10.1007/s11227-019-03024-z 10.1145/1390156.1390177 10.1007/978-3-642-19137-4_3 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021. |
| DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI |
| DOI | 10.1007/s10586-021-03321-4 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition |
| DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Advanced Technologies & Aerospace Collection |
| Database_xml | – sequence: 1 dbid: P5Z name: Advanced Technologies & Aerospace Database url: https://search.proquest.com/hightechjournals sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1573-7543 |
| EndPage | 3134 |
| ExternalDocumentID | 10_1007_s10586_021_03321_4 |
| GrantInformation_xml | – fundername: Türkiye Bilimsel ve Teknolojik Araştirma Kurumu (TR) grantid: 117E142 |
| GroupedDBID | -59 -5G -BR -EM -Y2 -~C .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 203 29B 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K7- KDC KOV LAK LLZTM M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM OVD P9O PF0 PT4 PT5 QOS R89 R9I RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7X Z7Z Z81 Z83 Z88 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABRTQ ADHKG ADKFA AFDZB AFFHD AFOHR AGQPQ AHPBZ ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 8FE 8FG AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQQKQ PQUKI |
| ID | FETCH-LOGICAL-c319t-96943ca690a419ffaa1145564a4bd58479c4dd8032f44ee521c8dadde180b10b3 |
| IEDL.DBID | P5Z |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000659409300004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1386-7857 |
| IngestDate | Mon Dec 01 09:10:47 EST 2025 Sat Nov 29 05:40:16 EST 2025 Tue Nov 18 22:26:01 EST 2025 Fri Feb 21 02:47:43 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Word embedding Semantic model String matching GPGPU |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-96943ca690a419ffaa1145564a4bd58479c4dd8032f44ee521c8dadde180b10b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-4429-5341 |
| PQID | 2918256174 |
| PQPubID | 2043865 |
| PageCount | 12 |
| ParticipantIDs | proquest_journals_2918256174 crossref_primary_10_1007_s10586_021_03321_4 crossref_citationtrail_10_1007_s10586_021_03321_4 springer_journals_10_1007_s10586_021_03321_4 |
| PublicationCentury | 2000 |
| PublicationDate | 20211200 2021-12-00 20211201 |
| PublicationDateYYYYMMDD | 2021-12-01 |
| PublicationDate_xml | – month: 12 year: 2021 text: 20211200 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Dordrecht |
| PublicationSubtitle | The Journal of Networks, Software Tools and Applications |
| PublicationTitle | Cluster computing |
| PublicationTitleAbbrev | Cluster Comput |
| PublicationYear | 2021 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Lovis, Baud (CR28) 2000; 7 CR19 CR17 CR15 CR14 CR36 CR13 CR35 Mitani, Ino, Hagihara (CR10) 2017; 28 Faro, Lecroq (CR20) 2013; 45 Leonardo, Hansun (CR26) 2017; 5 CR34 CR11 CR33 CR32 Finkelstein, Gabrilovich, Matias, Rivlin, Solan, Wolfman, Ruppin (CR39) 2002; 20 CR31 CR30 Rubenstein, Goodenough (CR37) 1965; 8 Bengio, Ducharme, Vincent, Jauvin (CR2) 2003; 3 CR4 CR3 Hakak, Kamsin, Shivakumara, Gilkar, Khan, Imran (CR21) 2019; 7 CR6 CR5 CR8 Naderalvojoud, Sezer (CR16) 2020; 405 Hakak, Kamsin, Shivakumara, Idris (CR25) 2018; 31 CR7 CR29 CR9 CR27 Jang, Lee, Lee, Shin, Kim, Rim (CR18) 2016; 19 Bruni, Tran, Baroni (CR41) 2014; 49 CR23 CR22 Gutmann, Hyvärinen (CR12) 2012; 13 Salton, Wong, Yang (CR1) 1975; 18 CR40 Hakak, Kamsin, Shivakumara, Idna Idris, Gilkar (CR24) 2018; 13 Miller, Charles (CR38) 1991; 6 3321_CR31 3321_CR30 3321_CR11 3321_CR33 3321_CR32 L Finkelstein (3321_CR39) 2002; 20 J Jang (3321_CR18) 2016; 19 B Naderalvojoud (3321_CR16) 2020; 405 S Faro (3321_CR20) 2013; 45 SI Hakak (3321_CR21) 2019; 7 MU Gutmann (3321_CR12) 2012; 13 GA Miller (3321_CR38) 1991; 6 S Hakak (3321_CR25) 2018; 31 3321_CR17 Y Mitani (3321_CR10) 2017; 28 3321_CR19 3321_CR13 3321_CR35 3321_CR34 3321_CR15 3321_CR14 3321_CR36 3321_CR9 H Rubenstein (3321_CR37) 1965; 8 3321_CR7 3321_CR22 3321_CR8 G Salton (3321_CR1) 1975; 18 3321_CR40 3321_CR5 3321_CR6 B Leonardo (3321_CR26) 2017; 5 Y Bengio (3321_CR2) 2003; 3 3321_CR3 3321_CR4 C Lovis (3321_CR28) 2000; 7 S Hakak (3321_CR24) 2018; 13 3321_CR27 3321_CR29 E Bruni (3321_CR41) 2014; 49 3321_CR23 |
| References_xml | – ident: CR22 – volume: 13 start-page: e0200912 issue: 7 year: 2018 ident: CR24 article-title: A new split based searching for exact pattern matching for natural texts publication-title: PLoS ONE doi: 10.1371/journal.pone.0200912 – ident: CR4 – ident: CR14 – ident: CR30 – ident: CR33 – ident: CR35 – ident: CR6 – ident: CR29 – volume: 405 start-page: 149 year: 2020 ident: CR16 article-title: Sentiment aware word embeddings using refinement and senti-contextualized learning approach publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.03.094 – ident: CR8 – ident: CR40 – ident: CR27 – volume: 19 start-page: 2315 issue: 4 year: 2016 ident: CR18 article-title: A novel density-based clustering method using word embedding features for dialogue intention recognition publication-title: Clust. Comput. doi: 10.1007/s10586-016-0649-7 – volume: 7 start-page: 69614 year: 2019 ident: CR21 article-title: Exact string matching algorithms: survey, issues, and future research directions publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2914071 – ident: CR23 – volume: 49 start-page: 1 year: 2014 ident: CR41 article-title: Multimodal distributional semantics publication-title: J. Artif. Intell. Res. doi: 10.1613/jair.4135 – ident: CR19 – volume: 13 start-page: 307 year: 2012 ident: CR12 article-title: Noise-contrastive estimation of unnormalized statistical models, with applications to natural image statistics publication-title: J. Mach. Learn. Res. – volume: 18 start-page: 613 issue: 11 year: 1975 ident: CR1 article-title: A vector space model for automatic indexing publication-title: Commun. ACM doi: 10.1145/361219.361220 – volume: 28 start-page: 1989 issue: 7 year: 2017 ident: CR10 article-title: Parallelizing exact and approximate string matching via inclusive scan on a GPU publication-title: IEEE Trans. Parallel Distrib. Syst. doi: 10.1109/TPDS.2016.2645222 – ident: CR3 – ident: CR15 – ident: CR17 – ident: CR31 – ident: CR13 – volume: 31 start-page: 200 issue: 3 year: 2018 ident: CR25 article-title: Partition-based pattern matching approach for efficient retrieval of arabic text publication-title: Malays. J. Comput. Sci. doi: 10.22452/mjcs.vol31no3.3 – ident: CR11 – ident: CR9 – ident: CR32 – ident: CR34 – volume: 6 start-page: 1 issue: 1 year: 1991 ident: CR38 article-title: Contextual correlates of semantic similarity publication-title: Lang. Cogn. Process. doi: 10.1080/01690969108406936 – volume: 5 start-page: 462 issue: 2 year: 2017 ident: CR26 article-title: Text documents plagiarism detection using Rabin-Karp and Jaro-Winkler distance algorithms publication-title: Indonesian J. Electr. Eng. Comput. Sci. doi: 10.11591/ijeecs.v5.i2.pp462-471 – ident: CR36 – volume: 3 start-page: 1137 year: 2003 ident: CR2 article-title: A neural probabilistic language model publication-title: J. Mach. Learn. Res. – ident: CR5 – volume: 45 start-page: 1 issue: 2 year: 2013 ident: CR20 article-title: The exact online string matching problem: a review of the most recent results publication-title: ACM Comput. Surv. doi: 10.1145/2431211.2431212 – ident: CR7 – volume: 8 start-page: 627 issue: 10 year: 1965 ident: CR37 article-title: Contextual correlates of synonymy publication-title: Commun. ACM doi: 10.1145/365628.365657 – volume: 7 start-page: 378 issue: 4 year: 2000 ident: CR28 article-title: Fast exact string pattern-matching algorithms adapted to the characteristics of the medical language publication-title: J. Am. Med. Inform. Assoc. doi: 10.1136/jamia.2000.0070378 – volume: 20 start-page: 116 issue: 1 year: 2002 ident: CR39 article-title: Placing search in context: the concept revisited publication-title: ACM Trans. Inf. Syst. doi: 10.1145/503104.503110 – ident: 3321_CR22 doi: 10.1007/978-3-319-99007-1_24 – volume: 49 start-page: 1 year: 2014 ident: 3321_CR41 publication-title: J. Artif. Intell. Res. doi: 10.1613/jair.4135 – ident: 3321_CR30 – ident: 3321_CR32 – ident: 3321_CR4 doi: 10.18653/v1/N18-1202 – volume: 13 start-page: e0200912 issue: 7 year: 2018 ident: 3321_CR24 publication-title: PLoS ONE doi: 10.1371/journal.pone.0200912 – ident: 3321_CR33 doi: 10.1109/PCI.2009.47 – ident: 3321_CR23 doi: 10.1007/978-981-13-7561-3_21 – volume: 6 start-page: 1 issue: 1 year: 1991 ident: 3321_CR38 publication-title: Lang. Cogn. Process. doi: 10.1080/01690969108406936 – ident: 3321_CR8 – ident: 3321_CR15 doi: 10.1007/s11227-019-03024-z – ident: 3321_CR40 – ident: 3321_CR6 – volume: 45 start-page: 1 issue: 2 year: 2013 ident: 3321_CR20 publication-title: ACM Comput. Surv. doi: 10.1145/2431211.2431212 – ident: 3321_CR36 – ident: 3321_CR17 – ident: 3321_CR13 – volume: 31 start-page: 200 issue: 3 year: 2018 ident: 3321_CR25 publication-title: Malays. J. Comput. Sci. doi: 10.22452/mjcs.vol31no3.3 – ident: 3321_CR11 – volume: 405 start-page: 149 year: 2020 ident: 3321_CR16 publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.03.094 – ident: 3321_CR29 – volume: 28 start-page: 1989 issue: 7 year: 2017 ident: 3321_CR10 publication-title: IEEE Trans. Parallel Distrib. Syst. doi: 10.1109/TPDS.2016.2645222 – volume: 3 start-page: 1137 year: 2003 ident: 3321_CR2 publication-title: J. Mach. Learn. Res. – ident: 3321_CR27 – volume: 19 start-page: 2315 issue: 4 year: 2016 ident: 3321_CR18 publication-title: Clust. Comput. doi: 10.1007/s10586-016-0649-7 – ident: 3321_CR31 – ident: 3321_CR5 doi: 10.1145/1390156.1390177 – volume: 20 start-page: 116 issue: 1 year: 2002 ident: 3321_CR39 publication-title: ACM Trans. Inf. Syst. doi: 10.1145/503104.503110 – volume: 13 start-page: 307 year: 2012 ident: 3321_CR12 publication-title: J. Mach. Learn. Res. – ident: 3321_CR19 – ident: 3321_CR35 – volume: 18 start-page: 613 issue: 11 year: 1975 ident: 3321_CR1 publication-title: Commun. ACM doi: 10.1145/361219.361220 – ident: 3321_CR14 – ident: 3321_CR7 – ident: 3321_CR9 – volume: 8 start-page: 627 issue: 10 year: 1965 ident: 3321_CR37 publication-title: Commun. ACM doi: 10.1145/365628.365657 – ident: 3321_CR3 – volume: 5 start-page: 462 issue: 2 year: 2017 ident: 3321_CR26 publication-title: Indonesian J. Electr. Eng. Comput. Sci. doi: 10.11591/ijeecs.v5.i2.pp462-471 – ident: 3321_CR34 doi: 10.1007/978-3-642-19137-4_3 – volume: 7 start-page: 69614 year: 2019 ident: 3321_CR21 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2914071 – volume: 7 start-page: 378 issue: 4 year: 2000 ident: 3321_CR28 publication-title: J. Am. Med. Inform. Assoc. doi: 10.1136/jamia.2000.0070378 |
| SSID | ssj0009729 |
| Score | 2.2370548 |
| Snippet | Unlike other word embedding models that learn word vectors for a collection of words sequentially, this paper proposes a non-sequential refinement approach to... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 3123 |
| SubjectTerms | Algorithms Computer Communication Networks Computer Science Embedding Hypotheses Language Learning Neural networks Operating Systems Probability Processor Architectures Semantics String matching Training |
| SummonAdditionalLinks | – databaseName: SpringerLINK Contemporary 1997-Present dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI5gcODCeIrBQDlwg0hNk67pcUIMThMChnar8uoY2hhaC_x9nKylgAAJLj00aZTacWzHjj-EjmmmlXWH7hGLFOFUUyJgqySxpiKWUZDxjvZgE3G_L4bD5Kq8FJZX2e5VSNLv1B8uu0XCJcy6FCAGT76MVkDdCQfYcH1zV5fajT02GWXQOxZRXF6V-X6Mz-qotjG_hEW9tuk1_zfPDbReWpe4u1gOm2jJPm6hZoXcgEtB3kYPXQxuP1nkUYOMTzDMDOxNd1SIqzLjuJjhsT9zsPgVfFRsp8oaH6vCLl1-hC-uBsSpQYMd-ge8APPX52ZiORnN5uPifprvoEHv_PbskpSoC0SDOBYk6SScaQles-Q0yTIpqStm3uGSK-OCqonmxoiAhRnn1oL618K4XZKKQNFAsV3UgF-wewhHAbUZY5E10nKVgG1kHe8VNRr4wsMWohXxU12WJHfIGJO0LqbsiJkCMVNPzJS30Mn7N0-Lghy_9m5XPE1L4czTMAGnCuzGGJpPKx7WzT-Ptv-37gdoLXTLwCe_tFGjmD_bQ7SqX4pxPj_yi_YNG-Xlqg priority: 102 providerName: Springer Nature |
| Title | A non-sequential refinement approach to improve word embeddings using GPU-based string matching algorithms |
| URI | https://link.springer.com/article/10.1007/s10586-021-03321-4 https://www.proquest.com/docview/2918256174 |
| Volume | 24 |
| WOSCitedRecordID | wos000659409300004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1573-7543 dateEnd: 20241212 omitProxy: false ssIdentifier: ssj0009729 issn: 1386-7857 databaseCode: P5Z dateStart: 19980101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1573-7543 dateEnd: 20241212 omitProxy: false ssIdentifier: ssj0009729 issn: 1386-7857 databaseCode: K7- dateStart: 19980101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1573-7543 dateEnd: 20241212 omitProxy: false ssIdentifier: ssj0009729 issn: 1386-7857 databaseCode: BENPR dateStart: 19980101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-7543 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009729 issn: 1386-7857 databaseCode: RSV dateStart: 19980101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZ4HbjwRozHlAM3iGjWdE1PCBAPCWmaeAlxqdokHaCxASvw97GzlAokuHDpoY8o1Wc7ju34A9gWhc4tBd2jMMq5FFpwhaaSx1qoOIuCQra1I5uIOx11e5t0fcBt5MsqK5voDLUZaoqR77US9IRxsY_l_vMLJ9Yoyq56Co1JmKYuCUTd0I3u6qa7sWMpE6Fq81hFsT8044_ORYrKb6mgKMSr_L4w1d7mjwSpW3dO5v874wWY8x4nOxiLyCJM2MESzFdsDswr9zI8HrDBcMDHtdWo932Gc0QflMKHrGo9zsohe3BxCMs-cN_K7FNujctfMSqh77HT7jWnpdEwYgTBG-gSu3pNlvV7OL3y_mm0Atcnx1dHZ9wzMXCNKlrypJ3IUGe4k86kSIoiywQ1OG_LTOaGEq2JlsaoIGwVUlqLLoFWhiynUEEugjxchSn8BbsGLAqELcIwsiazMk_QX7IkD7kwGhGSrQaICoZU-zblxJbRT-sGywRditClDrpUNmDn65vncZOOP9_erPBKvcKO0hqsBuxWiNePfx9t_e_RNmC2RULmCmA2Yap8fbNbMKPfy4fRaxOmD4873YsmTJ7HvOmEF68XlzefquLzag |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB4BrQQXKAXEUtr6QE-tRRw7a-dQIVRKQQsrDiBxC4ntbKmWXWBDq_6p_kZmvAkRlcqNQy855GHJ9ueZybw-gC1R2sKT0z2RScGVsIIbFJVcW2F0nkSl6tpANqH7fXN-np7MwJ-mFobSKhuZGAS1G1vykW_HKVrCqOy12rm-4cQaRdHVhkJjCoue__0Lf9kmnw_3cH8_xPH-19MvB7xmFeAW4VbxtJsqaXP8K8yVSMsyzwU16-6qXBWOgoapVc6ZSMalUt6jerPGkRQQJipEVEgcdxZeKGk0naue5m2TXx1Y0YQ0Xa5NousinbpULzGU7ksJTBKv6rEibK3bvwKyQc_tL_1vK_QKFmuLmu1Oj8AyzPjRa1hq2CpYLbxW4McuG41HfJo7jnJtyHBN0MYm9yhrWquzaswug5_FM5oC81eFdyE-x6hEYMC-nZxxUv2OEeMJ3kCTP-Sjsnw4wOWovl9NVuHsWWa8BnM4Bb8OLImEL6VMvMu9KlK0Bz3hvRDOIiJU3AHRbHtm6zbsxAYyzNoG0gSVDKGSBahkqgMfH765njYhefLtzQYfWS2QJlkLjg58ahDWPv73aBtPj_Ye5g9Oj4-yo8N-7w0sxATwkOyzCXPV7Z1_Cy_tz-pycvsuHBUGF8-NvHsPzUwk |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT4MwEG90GuOL8zNOp_bBNyVSKAMeF3VqNMsSndkbgbbMmY0tG-q_710BmUZNjC880NKU3l171_vdHSHHLBaRwkt3x3YigzPBDA-2SsMVzHNDx4x5Q-hiE2677fV6fmcuil-j3QuXZBbTgFmakvRsIuOzucA3x0PwLMKBbHjyRbLEEUiP9vr9Y5l219V1ypgNvV3PcfOwme_H-Hw0lfrmFxepPnla1f_PeZ2s5VonbWZsskEWVLJJqkVFB5oL-BZ5btJknBgZvhpkf0hhlqCH4hUiLdKP03RMB_ouQtE3sF2pGkVKah8WRRh9n151ugYej5JiVRB4AWqxxmzScNgfTwfp02i2Tbqty4fzayOvxmAIENPU8Bs-t0UI1nTImR_HYcgwyXmDhzyS6Gz1BZfSM20r5lwpUAuEJ3H3ZJ4ZMTOyd0gFfkHtEuqYTMW27SgZKh75oDMp5ImISQE04laNsIIQgchTlWPFjGFQJlnGxQxgMQO9mAGvkZOPbyZZoo5fe9cL-ga50M4CywdjC_RJF5pPC3qWzT-Ptve37kdkpXPRCu5u2rf7ZNVCjtD4mDqppNMXdUCWxWs6mE0PNS-_AzAy8XI |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+non-sequential+refinement+approach+to+improve+word+embeddings+using+GPU-based+string+matching+algorithms&rft.jtitle=Cluster+computing&rft.au=Naderalvojoud%2C+Behzad&rft.au=Ozsoy%2C+Adnan&rft.date=2021-12-01&rft.pub=Springer+Nature+B.V&rft.issn=1386-7857&rft.eissn=1573-7543&rft.volume=24&rft.issue=4&rft.spage=3123&rft.epage=3134&rft_id=info:doi/10.1007%2Fs10586-021-03321-4 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1386-7857&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1386-7857&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1386-7857&client=summon |