Automatic lane marking prediction using convolutional neural network and S-Shaped Binary Butterfly Optimization
Lane detection is a technique that uses geometric features as an input to the autonomous vehicle to automatically distinguish lane markings. To process the intricate features present in the lane images, traditional computer vision (CV) techniques are typically time-consuming, need more computing res...
Saved in:
| Published in: | The Journal of supercomputing Vol. 78; no. 3; pp. 3715 - 3745 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
Springer US
01.02.2022
Springer Nature B.V |
| Subjects: | |
| ISSN: | 0920-8542, 1573-0484 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Lane detection is a technique that uses geometric features as an input to the autonomous vehicle to automatically distinguish lane markings. To process the intricate features present in the lane images, traditional computer vision (CV) techniques are typically time-consuming, need more computing resources, and use complex algorithms. To address this problem, this paper presents a deep convolutional neural network (CNN) architecture that prevents the complexities of traditional CV techniques. CNN is regarded as a reasonable method for lane marking prediction, while improved performance requires hyperparameter tuning. To enhance the initial parameter setting of the CNN, an S-Shaped Binary Butterfly Optimization Algorithm (SBBOA) is utilized in this paper. In this way, the relative parameters of CNN are selected for accurate lane marking. To evaluate the performance of the proposed SBBOA-CNN model, extensive experiments are conducted using the TUSimple and CULane datasets. The experimental results obtained show that the proposed approach outperforms other state-of-the-art techniques in terms of classification accuracy, precision,
F
1-score, and recall. The proposed model also considerably outperforms the CNN in terms of classification accuracy, average elapsed time, and receiver operating characteristics curve measure. This result demonstrates that the SBBOA optimized CNN exhibits higher robustness and stability than CNN. |
|---|---|
| AbstractList | Lane detection is a technique that uses geometric features as an input to the autonomous vehicle to automatically distinguish lane markings. To process the intricate features present in the lane images, traditional computer vision (CV) techniques are typically time-consuming, need more computing resources, and use complex algorithms. To address this problem, this paper presents a deep convolutional neural network (CNN) architecture that prevents the complexities of traditional CV techniques. CNN is regarded as a reasonable method for lane marking prediction, while improved performance requires hyperparameter tuning. To enhance the initial parameter setting of the CNN, an S-Shaped Binary Butterfly Optimization Algorithm (SBBOA) is utilized in this paper. In this way, the relative parameters of CNN are selected for accurate lane marking. To evaluate the performance of the proposed SBBOA-CNN model, extensive experiments are conducted using the TUSimple and CULane datasets. The experimental results obtained show that the proposed approach outperforms other state-of-the-art techniques in terms of classification accuracy, precision,
F
1-score, and recall. The proposed model also considerably outperforms the CNN in terms of classification accuracy, average elapsed time, and receiver operating characteristics curve measure. This result demonstrates that the SBBOA optimized CNN exhibits higher robustness and stability than CNN. Lane detection is a technique that uses geometric features as an input to the autonomous vehicle to automatically distinguish lane markings. To process the intricate features present in the lane images, traditional computer vision (CV) techniques are typically time-consuming, need more computing resources, and use complex algorithms. To address this problem, this paper presents a deep convolutional neural network (CNN) architecture that prevents the complexities of traditional CV techniques. CNN is regarded as a reasonable method for lane marking prediction, while improved performance requires hyperparameter tuning. To enhance the initial parameter setting of the CNN, an S-Shaped Binary Butterfly Optimization Algorithm (SBBOA) is utilized in this paper. In this way, the relative parameters of CNN are selected for accurate lane marking. To evaluate the performance of the proposed SBBOA-CNN model, extensive experiments are conducted using the TUSimple and CULane datasets. The experimental results obtained show that the proposed approach outperforms other state-of-the-art techniques in terms of classification accuracy, precision, F1-score, and recall. The proposed model also considerably outperforms the CNN in terms of classification accuracy, average elapsed time, and receiver operating characteristics curve measure. This result demonstrates that the SBBOA optimized CNN exhibits higher robustness and stability than CNN. |
| Author | Alajlan, Abrar Mohammed Almasri, Marwah Mohammad |
| Author_xml | – sequence: 1 givenname: Abrar Mohammed surname: Alajlan fullname: Alajlan, Abrar Mohammed email: aalajlan1@ksu.edu.sa organization: Self-Development Skills Department, Common First Year Deanship, King Saud University – sequence: 2 givenname: Marwah Mohammad surname: Almasri fullname: Almasri, Marwah Mohammad organization: College of Computing and Informatics, Saudi Electronic University |
| BookMark | eNp9kM9LwzAYhoMoOKf_gKeA5-iXpGubo4q_QPCgnkOWpjNbl9QkVedfb7sKgoeRwwcv7xNeniO077wzCJ1SOKcAxUWklLGCAKMEuChL8rWHJnRWcAJZme2jCQgGpJxl7BAdxbgEgIwXfIL8ZZf8WiWrcaOcwWsVVtYtcBtMZXWy3uEuDoH27sM33ZCoBjvThe1Jnz6ssHIVfibPb6o1Fb6yToUNvupSMqFuNvipTXZtv9XAHqODWjXRnPzeKXq9vXm5viePT3cP15ePRHMqEhFc54xRXrFalzTXDCgoA2Ke1blgQvF5HzOV6xmDWhWqyjjXFc0qUQhgpeJTdDb-2wb_3pmY5NJ3oZ8eJcv7V-Y5LfpWObZ08DEGU0tt03ZnCso2koIc9MpRr-z1yq1e-dWj7B_aBtvb2-yG-AjFvuwWJvyt2kH9ADQMkbc |
| CitedBy_id | crossref_primary_10_1007_s11227_023_05487_7 crossref_primary_10_1109_ACCESS_2023_3234442 |
| Cites_doi | 10.1016/j.eswa.2017.11.028 10.1007/s00500-018-3102-4 10.1016/j.cose.2018.04.009 10.1109/TVT.2019.2949603 10.1016/j.eswa.2018.12.005 10.1504/IJBET.2019.103242 10.1007/s10115-018-1263-1 10.1080/01441647.2018.1494640 10.1109/ACCESS.2020.3019245 10.1007/s00500-018-3124-y 10.1016/j.advengsoft.2015.01.010 10.1016/j.amc.2019.124919 10.1177/0361198120922210 10.1016/j.chemolab.2015.08.020 10.1007/s11042-019-7577-5 10.3390/s19071665 10.1016/j.knosys.2020.105584 10.1007/s00521-020-05474-6 10.1109/ICETETS.2016.7603013 10.1002/pip.3315 10.1007/s13369-020-04918-4 10.1002/ett.4132 10.1007/s11042-021-11123-4 10.1109/ICCV.2017.215 10.1016/j.engappai.2020.104079 10.1007/978-3-319-93025-1_4 10.1155/2018/8320207 10.1109/TITS.2021.3088488 10.1007/s12652-020-02424-x 10.1002/rob.22020 10.1007/s11042-020-10248-2 10.1016/j.dib.2019.105046 10.1109/CVPR46437.2021.00036 10.1109/ICCV.2019.00301 10.1109/TIE.2021.3066943 10.1016/j.isatra.2020.10.052 10.1016/j.matpr.2020.09.605 10.1007/s40747-021-00422-w 10.1016/j.compeleceng.2020.106653 10.1016/j.isprsjprs.2020.05.022 10.1016/j.renene.2020.08.125 10.1109/ICCSP.2019.8698065 10.1016/j.jvcir.2019.102675 10.1109/CVPR.2019.01185 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021. |
| DBID | AAYXX CITATION JQ2 |
| DOI | 10.1007/s11227-021-03988-x |
| DatabaseName | CrossRef ProQuest Computer Science Collection |
| DatabaseTitle | CrossRef ProQuest Computer Science Collection |
| DatabaseTitleList | ProQuest Computer Science Collection |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1573-0484 |
| EndPage | 3745 |
| ExternalDocumentID | 10_1007_s11227_021_03988_x |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 199 1N0 1SB 2.D 203 28- 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYOK AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDPE ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADQRH ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EAS EBD EBLON EBS EDO EIOEI EJD EMK EPL ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RNI ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WH7 WK8 YLTOR Z45 Z7R Z7X Z7Z Z83 Z88 Z8M Z8N Z8R Z8T Z8W Z92 ZMTXR ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABJCF ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFFHD AFHIU AFKRA AFOHR AGQPQ AHPBZ AHWEU AIXLP ARAPS ATHPR AYFIA BENPR BGLVJ CCPQU CITATION HCIFZ K7- M7S PHGZM PHGZT PQGLB PTHSS JQ2 |
| ID | FETCH-LOGICAL-c319t-93c62213d2fc816c2010ae09b4f6929a3bc812a6c520fa7ad433cd14d979028a3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000682413600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0920-8542 |
| IngestDate | Thu Sep 25 00:45:13 EDT 2025 Tue Nov 18 22:32:52 EST 2025 Sat Nov 29 04:27:41 EST 2025 Fri Feb 21 02:47:51 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Hyperparameter optimization Lane detection Binary optimization Autonomous cars Convolutional neural network |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-93c62213d2fc816c2010ae09b4f6929a3bc812a6c520fa7ad433cd14d979028a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2626286617 |
| PQPubID | 2043774 |
| PageCount | 31 |
| ParticipantIDs | proquest_journals_2626286617 crossref_citationtrail_10_1007_s11227_021_03988_x crossref_primary_10_1007_s11227_021_03988_x springer_journals_10_1007_s11227_021_03988_x |
| PublicationCentury | 2000 |
| PublicationDate | 2022-02-01 |
| PublicationDateYYYYMMDD | 2022-02-01 |
| PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationSubtitle | An International Journal of High-Performance Computer Design, Analysis, and Use |
| PublicationTitle | The Journal of supercomputing |
| PublicationTitleAbbrev | J Supercomput |
| PublicationYear | 2022 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Sundararaj, Muthukumar, Kumar (CR16) 2018; 77 Gowthul Alam, Baulkani (CR30) 2019; 23 Johnson, Valderrama, Valle, Crawford, Soto, Ñanculef (CR35) 2020; 8 CR39 CR38 CR37 CR33 Mirjalili (CR13) 2015; 83 CR32 Marini, Walczak (CR52) 2015; 149 Gowthul Alam, Baulkani (CR29) 2017; 12 Wang, Lin, Wang (CR14) 2020; 9 Arora, Singh (CR47) 2019; 23 CR3 CR5 CR8 CR7 Haseena, Anees, Madheswari (CR27) 2014; 6 CR9 CR49 CR48 CR45 CR44 CR43 CR42 CR41 CR40 Han, Liu, Fan (CR36) 2018; 95 CR19 Hassan, Rashid (CR34) 2020; 370 CR15 Gowthul Alam, Baulkani (CR28) 2019; 60 Sundararaj (CR18) 2019; 31 CR11 CR10 CR53 CR51 CR50 Rejeesh (CR22) 2019; 78 Taeihagh, Lim (CR1) 2019; 39 Nisha, Madheswari (CR31) 2016; 22 El Hajjouji, Mars, Asrih, El Mourabit (CR12) 2020; 23 Zhang, Zhu (CR4) 2019; 121 Sundararaj (CR17) 2016; 9 CR26 CR25 Zou, Jiang, Dai, Yue, Chen, Wang (CR2) 2019; 69 CR24 CR23 CR21 CR20 Kuo, Lu, Yang (CR6) 2019; 19 Mahajan, Katrakazas, Antoniou (CR46) 2020; 2674 V Sundararaj (3988_CR18) 2019; 31 3988_CR11 MM Gowthul Alam (3988_CR29) 2017; 12 S Nisha (3988_CR31) 2016; 22 3988_CR15 3988_CR50 3988_CR10 3988_CR53 3988_CR51 MM Gowthul Alam (3988_CR30) 2019; 23 Bryar A. Hassan (3988_CR34) 2020; 370 D Han (3988_CR36) 2018; 95 3988_CR19 S Mirjalili (3988_CR13) 2015; 83 3988_CR7 3988_CR25 3988_CR24 3988_CR5 3988_CR23 MM Gowthul Alam (3988_CR28) 2019; 60 3988_CR3 3988_CR26 W Wang (3988_CR14) 2020; 9 3988_CR21 3988_CR20 MR Rejeesh (3988_CR22) 2019; 78 X Zhang (3988_CR4) 2019; 121 3988_CR9 3988_CR8 3988_CR33 KS Haseena (3988_CR27) 2014; 6 3988_CR39 3988_CR38 3988_CR37 A Taeihagh (3988_CR1) 2019; 39 3988_CR32 V Sundararaj (3988_CR16) 2018; 77 I El Hajjouji (3988_CR12) 2020; 23 3988_CR45 3988_CR44 3988_CR49 Q Zou (3988_CR2) 2019; 69 3988_CR48 V Sundararaj (3988_CR17) 2016; 9 3988_CR43 V Mahajan (3988_CR46) 2020; 2674 3988_CR42 F Johnson (3988_CR35) 2020; 8 3988_CR41 S Arora (3988_CR47) 2019; 23 3988_CR40 CY Kuo (3988_CR6) 2019; 19 F Marini (3988_CR52) 2015; 149 |
| References_xml | – ident: CR45 – volume: 9 start-page: 1 year: 2020 end-page: 10 ident: CR14 article-title: CNN based lane detection with instance segmentation in edge-cloud computing publication-title: J Cloud Comput – ident: CR49 – ident: CR39 – ident: CR51 – volume: 9 start-page: 117 issue: 3 year: 2016 end-page: 126 ident: CR17 article-title: An efficient threshold prediction scheme for wavelet based ECG signal noise reduction using variable step size firefly algorithm publication-title: Int J Intell Eng Syst – ident: CR8 – volume: 95 start-page: 43 year: 2018 end-page: 56 ident: CR36 article-title: A new image classification method using CNN transfer learning and web data augmentation publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2017.11.028 – ident: CR25 – ident: CR42 – ident: CR21 – volume: 6 start-page: 430 year: 2014 end-page: 436 ident: CR27 article-title: Power optimization using EPAR protocol in MANET publication-title: Int J Innov Sci Eng Technol – ident: CR19 – volume: 23 start-page: 274 issue: 2 year: 2020 end-page: 280 ident: CR12 article-title: A novel FPGA implementation of Hough transform for straight lane detection publication-title: Eng Sci Technol Int J – volume: 23 start-page: 715 issue: 3 year: 2019 end-page: 734 ident: CR47 article-title: Butterfly optimization algorithm: a novel approach for global optimization publication-title: Soft Comput doi: 10.1007/s00500-018-3102-4 – ident: CR15 – ident: CR50 – volume: 77 start-page: 277 year: 2018 end-page: 288 ident: CR16 article-title: An optimal cluster formation based energy efficient dynamic scheduling hybrid MAC protocol for heavy traffic load in wireless sensor networks publication-title: Comput Secur doi: 10.1016/j.cose.2018.04.009 – ident: CR11 – volume: 69 start-page: 41 issue: 1 year: 2019 end-page: 54 ident: CR2 article-title: Robust lane detection from continuous driving scenes using deep neural networks publication-title: IEEE Trans Veh Technol doi: 10.1109/TVT.2019.2949603 – ident: CR9 – volume: 121 start-page: 38 year: 2019 end-page: 48 ident: CR4 article-title: Autonomous path tracking control of intelligent electric vehicles based on lane detection and optimal preview method publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2018.12.005 – ident: CR32 – volume: 31 start-page: 325 issue: 4 year: 2019 ident: CR18 article-title: Optimised denoising scheme via opposition-based self-adaptive learning PSO algorithm for wavelet-based ECG signal noise reduction publication-title: Int J Biomed Eng Technol doi: 10.1504/IJBET.2019.103242 – volume: 60 start-page: 971 issue: 2 year: 2019 end-page: 1000 ident: CR28 article-title: Local and global characteristics-based kernel hybridization to increase optimal support vector machine performance for stock market prediction publication-title: Knowl Inf Syst doi: 10.1007/s10115-018-1263-1 – ident: CR5 – ident: CR26 – volume: 39 start-page: 103 issue: 1 year: 2019 end-page: 128 ident: CR1 article-title: Governing autonomous vehicles: emerging responses for safety, liability, privacy, cybersecurity, and industry risks publication-title: Transp Rev doi: 10.1080/01441647.2018.1494640 – ident: CR43 – ident: CR37 – ident: CR53 – ident: CR10 – volume: 8 start-page: 156139 year: 2020 end-page: 156152 ident: CR35 article-title: Automating configuration of convolutional neural network hyperparameters using genetic algorithm publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3019245 – ident: CR33 – volume: 23 start-page: 1079 issue: 4 year: 2019 end-page: 1098 ident: CR30 article-title: Geometric structure information based multi-objective function to increase fuzzy clustering performance with artificial and real-life data publication-title: Soft Comput doi: 10.1007/s00500-018-3124-y – volume: 12 start-page: 299 issue: 3 year: 2017 ident: CR29 article-title: Reformulated query-based document retrieval using optimised kernel fuzzy clustering algorithm publication-title: Int J Bus Intell Data Min – ident: CR40 – volume: 83 start-page: 80 year: 2015 end-page: 98 ident: CR13 article-title: The ant lion optimizer publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2015.01.010 – ident: CR23 – volume: 370 start-page: 124919 year: 2020 ident: CR34 article-title: Operational framework for recent advances in backtracking search optimisation algorithm: A systematic review and performance evaluation publication-title: Applied Mathematics and Computation doi: 10.1016/j.amc.2019.124919 – ident: CR44 – volume: 2674 start-page: 336 issue: 7 year: 2020 end-page: 347 ident: CR46 article-title: Prediction of lane-changing maneuvers with automatic labeling and deep learning publication-title: Transp Res Rec doi: 10.1177/0361198120922210 – ident: CR48 – ident: CR3 – ident: CR38 – volume: 149 start-page: 153 year: 2015 end-page: 165 ident: CR52 article-title: Particle swarm optimization (PSO). A tutorial publication-title: Chemom Intell Lab Syst doi: 10.1016/j.chemolab.2015.08.020 – volume: 78 start-page: 22691 issue: 16 year: 2019 end-page: 22710 ident: CR22 article-title: Interest point based face recognition using adaptive neuro fuzzy inference system publication-title: Multimed Tools Appl doi: 10.1007/s11042-019-7577-5 – volume: 19 start-page: 1665 issue: 7 year: 2019 ident: CR6 article-title: On the image sensor processing for lane detection and control in vehicle lane keeping systems publication-title: Sensors doi: 10.3390/s19071665 – volume: 22 start-page: 45 issue: 1 year: 2016 end-page: 49 ident: CR31 article-title: Secured authentication for internet voting in corporate companies to prevent phishing attacks publication-title: Int J Emerg Technol Comput Sci Electron (IJETCSE) – ident: CR7 – ident: CR41 – ident: CR24 – ident: CR20 – ident: 3988_CR39 doi: 10.1016/j.knosys.2020.105584 – ident: 3988_CR25 doi: 10.1007/s00521-020-05474-6 – ident: 3988_CR33 doi: 10.1109/ICETETS.2016.7603013 – volume: 121 start-page: 38 year: 2019 ident: 3988_CR4 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2018.12.005 – volume: 19 start-page: 1665 issue: 7 year: 2019 ident: 3988_CR6 publication-title: Sensors doi: 10.3390/s19071665 – ident: 3988_CR50 – volume: 12 start-page: 299 issue: 3 year: 2017 ident: 3988_CR29 publication-title: Int J Bus Intell Data Min – ident: 3988_CR19 doi: 10.1002/pip.3315 – ident: 3988_CR40 doi: 10.1007/s13369-020-04918-4 – volume: 78 start-page: 22691 issue: 16 year: 2019 ident: 3988_CR22 publication-title: Multimed Tools Appl doi: 10.1007/s11042-019-7577-5 – ident: 3988_CR23 doi: 10.1002/ett.4132 – ident: 3988_CR32 doi: 10.1007/s11042-021-11123-4 – volume: 6 start-page: 430 year: 2014 ident: 3988_CR27 publication-title: Int J Innov Sci Eng Technol – volume: 8 start-page: 156139 year: 2020 ident: 3988_CR35 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3019245 – ident: 3988_CR43 doi: 10.1109/ICCV.2017.215 – volume: 23 start-page: 274 issue: 2 year: 2020 ident: 3988_CR12 publication-title: Eng Sci Technol Int J – ident: 3988_CR37 doi: 10.1016/j.engappai.2020.104079 – ident: 3988_CR53 doi: 10.1007/978-3-319-93025-1_4 – ident: 3988_CR9 doi: 10.1155/2018/8320207 – ident: 3988_CR42 doi: 10.1109/TITS.2021.3088488 – ident: 3988_CR7 – volume: 23 start-page: 715 issue: 3 year: 2019 ident: 3988_CR47 publication-title: Soft Comput doi: 10.1007/s00500-018-3102-4 – ident: 3988_CR21 doi: 10.1007/s12652-020-02424-x – volume: 77 start-page: 277 year: 2018 ident: 3988_CR16 publication-title: Comput Secur doi: 10.1016/j.cose.2018.04.009 – ident: 3988_CR20 doi: 10.1002/rob.22020 – volume: 370 start-page: 124919 year: 2020 ident: 3988_CR34 publication-title: Applied Mathematics and Computation doi: 10.1016/j.amc.2019.124919 – ident: 3988_CR44 doi: 10.1007/s11042-020-10248-2 – ident: 3988_CR24 doi: 10.1016/j.dib.2019.105046 – volume: 22 start-page: 45 issue: 1 year: 2016 ident: 3988_CR31 publication-title: Int J Emerg Technol Comput Sci Electron (IJETCSE) – ident: 3988_CR41 doi: 10.1109/CVPR46437.2021.00036 – ident: 3988_CR3 doi: 10.1109/ICCV.2019.00301 – volume: 149 start-page: 153 year: 2015 ident: 3988_CR52 publication-title: Chemom Intell Lab Syst doi: 10.1016/j.chemolab.2015.08.020 – volume: 69 start-page: 41 issue: 1 year: 2019 ident: 3988_CR2 publication-title: IEEE Trans Veh Technol doi: 10.1109/TVT.2019.2949603 – ident: 3988_CR45 doi: 10.1109/TIE.2021.3066943 – ident: 3988_CR48 doi: 10.1016/j.isatra.2020.10.052 – ident: 3988_CR10 doi: 10.1016/j.matpr.2020.09.605 – volume: 31 start-page: 325 issue: 4 year: 2019 ident: 3988_CR18 publication-title: Int J Biomed Eng Technol doi: 10.1504/IJBET.2019.103242 – volume: 23 start-page: 1079 issue: 4 year: 2019 ident: 3988_CR30 publication-title: Soft Comput doi: 10.1007/s00500-018-3124-y – ident: 3988_CR26 doi: 10.1007/s40747-021-00422-w – ident: 3988_CR8 doi: 10.1016/j.compeleceng.2020.106653 – ident: 3988_CR49 doi: 10.1016/j.isprsjprs.2020.05.022 – ident: 3988_CR15 doi: 10.1016/j.renene.2020.08.125 – volume: 95 start-page: 43 year: 2018 ident: 3988_CR36 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2017.11.028 – volume: 9 start-page: 1 year: 2020 ident: 3988_CR14 publication-title: J Cloud Comput – volume: 83 start-page: 80 year: 2015 ident: 3988_CR13 publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2015.01.010 – ident: 3988_CR11 doi: 10.1016/j.compeleceng.2020.106653 – ident: 3988_CR51 doi: 10.1109/ICCSP.2019.8698065 – volume: 39 start-page: 103 issue: 1 year: 2019 ident: 3988_CR1 publication-title: Transp Rev doi: 10.1080/01441647.2018.1494640 – volume: 60 start-page: 971 issue: 2 year: 2019 ident: 3988_CR28 publication-title: Knowl Inf Syst doi: 10.1007/s10115-018-1263-1 – volume: 9 start-page: 117 issue: 3 year: 2016 ident: 3988_CR17 publication-title: Int J Intell Eng Syst – ident: 3988_CR38 doi: 10.1016/j.jvcir.2019.102675 – volume: 2674 start-page: 336 issue: 7 year: 2020 ident: 3988_CR46 publication-title: Transp Res Rec doi: 10.1177/0361198120922210 – ident: 3988_CR5 doi: 10.1109/CVPR.2019.01185 |
| SSID | ssj0004373 |
| Score | 2.2769625 |
| Snippet | Lane detection is a technique that uses geometric features as an input to the autonomous vehicle to automatically distinguish lane markings. To process the... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 3715 |
| SubjectTerms | Accuracy Algorithms Artificial neural networks Classification Compilers Computer Science Computer vision Interpreters Marking Mathematical models Neural networks Optimization Parameters Performance evaluation Processor Architectures Programming Languages |
| Title | Automatic lane marking prediction using convolutional neural network and S-Shaped Binary Butterfly Optimization |
| URI | https://link.springer.com/article/10.1007/s11227-021-03988-x https://www.proquest.com/docview/2626286617 |
| Volume | 78 |
| WOSCitedRecordID | wos000682413600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: Springer Standard Collection customDbUrl: eissn: 1573-0484 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004373 issn: 0920-8542 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA4yPXhx_sTqlBy8aaBN0iY9TnF4kClOx24lS1IVtm5sneh_b5KlFkUFPRXaNJT38vJe-r7vPQBOqMQxz3WINOcK0UTnSPA4QVirkEtibMSBaPrXrNvlg0F660lh8wrtXqUk3U5dk90ijBmykIKQpEa_JnJcNe6O24YNd71-zYYky7xyag5GPKbYU2W-n-OzO6pjzC9pUedtOs3_fecm2PDRJWwvl8MWWNHFNmhWnRugN-QdMGkvyokr1got2BWOhftlDqczm7exuoIWEP8ILSjdL04zry1-6S4OOg5FoWAP9Z7EVCt47oi90De-Hr3BG7MZjT3Lcxc8dC7vL66Qb72ApLHJEqVEJhhHROFc8iiRNmcudJgOaZ6YgEqQobmNRSJjHOaCCUUJkSqiKmW2HIwge6BRTAq9DyBhMiY4N5Ga0jQXRHAumfHMVA5pxBIVgKjSQCZ9XXLbHmOU1RWVrUQzI9HMSTR7DcDpxzvTZVWOX0e3KsVm3kLnGTYnOcxNdMICcFYpsn7882wHfxt-CNaxZUw4oHcLNMrZQh-BNflSPs9nx27lvgOLLeo3 |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA8yBX1xfuJ0ah5800CbpG36OMUxcU5xc-ytZEmqwr7YOtH_3iRLLYoK-lRo01DucrlL73e_A-CEChywVHlIMSYRDVWKOAtChJX0mCDaRiyIptuMWi3W68V3rihslqPd85Sk3amLYjcf4wgZSIFHYq1fHTkuU-2xDGP-fbtbVEOSRV451gcjFlDsSmW-n-OzOypizC9pUett6uX_fecGWHfRJawtlsMmWFKjLVDOOzdAZ8jbYFybZ2NL1goN2BUOuf1lDidTk7cxuoIGEP8IDSjdLU49ryG_tBcLHYd8JGEbtZ_4REl4bgt7oWt8PXiDt3ozGroqzx3wUL_sXDSQa72AhLbJDMVEhBj7ROJUMD8UJmfOlRf3aRrqgIqTvr6NeSgC7KU84pISIqRPZRwZOhhOdkFpNB6pPQBJJAKCUx2pSUVTTjhjItKemYo-9aNQVoCfayARjpfctMcYJAWjspFooiWaWIkmrxVw-vHOZMHK8evoaq7YxFnoLMH6JIeZjk6iCjjLFVk8_nm2_b8NPwarjc5NM2leta4PwBo21RMW9F0FpWw6V4dgRbxkz7PpkV3F744T7Rs |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA6iIr44rzivefBNg22StunjvAxFmYPp8K1kuaig3ZhV9N-bpKlVUUF8KrRpKDk5zUnO930HgB0qcMS0CpBiTCIaK404i2KElQyYIMZHHIimf550Ouz6Ou1-YPE7tHuVkiw5DValKS_2R1Lv18S3EOMEWXhBQFJjaxNFTlELpLf79V6_ZkaSMsecmk0Siyj2tJnv-_i8NNXx5pcUqVt52o3_f_M8mPNRJ2yV02QBTKh8ETSqig7QO_gSGLaeiqETcYUWBAsfuDtKh6OxzedYG0ILlL-BFqzuJ63p14piuouDlEOeS9hDvVs-UhIeOMIv9AWx71_hhflJPXj25zK4ah9fHp4gX5IBCeOrBUqJiDEOicRasDAWNpfOVZAOqI5NoMXJwNzGPBYRDjRPuKSECBlSmSZWJoaTFTCZD3O1CiBJRESwNhGcVFRzwhkTiVmxqRjQMIllE4SVNTLh9cpt2Yz7rFZatiOamRHN3IhmL02w-_7OqFTr-LX1RmXkzHvuY4bNDg8zE7UkTbBXGbV-_HNva39rvg1mukft7Py0c7YOZrElVTgs-AaYLMZPahNMi-fi7nG85Sb0Gw2-9f8 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+lane+marking+prediction+using+convolutional+neural+network+and+S-Shaped+Binary+Butterfly+Optimization&rft.jtitle=The+Journal+of+supercomputing&rft.au=Alajlan%2C+Abrar+Mohammed&rft.au=Almasri%2C+Marwah+Mohammad&rft.date=2022-02-01&rft.pub=Springer+Nature+B.V&rft.issn=0920-8542&rft.eissn=1573-0484&rft.volume=78&rft.issue=3&rft.spage=3715&rft.epage=3745&rft_id=info:doi/10.1007%2Fs11227-021-03988-x&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-8542&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-8542&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-8542&client=summon |