Multi-objective optimisation based fuzzy association rule mining method

Fuzzy association rule mining (FARM) is a mainstream method to discover hidden patterns and association rules in quantitative data. It is essential to improve performance metrics, including quantity performance (e.g., the number of rules, the number of frequent itemsets) and quality performance (e.g...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:World wide web (Bussum) Jg. 26; H. 3; S. 1055 - 1072
Hauptverfasser: Zheng, Hui, He, Jing, Liu, Qing, Li, Jianhua, Huang, Guangli, Li, Peng
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.05.2023
Springer Nature B.V
Schlagworte:
ISSN:1386-145X, 1573-1413
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Fuzzy association rule mining (FARM) is a mainstream method to discover hidden patterns and association rules in quantitative data. It is essential to improve performance metrics, including quantity performance (e.g., the number of rules, the number of frequent itemsets) and quality performance (e.g., fuzzy support and confidence). The current approaches inadequately support optimisation of both quantity and quality performance. We propose a multi-objective optimisation algorithm for FARM (MOOFARM), where quantity and quality performance metrics are improved and validated simultaneously. The experimental evaluation conducted on a real dataset showcases the outstanding performance of MOOFARM against state-of-the-art works. In particular, at minimum support = 0.1, minimum confidence = 0.7, our MOOFARM increases the quantity performance up to 11 times. The proposed method improves the quality performance up to 71.05 % .
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1386-145X
1573-1413
DOI:10.1007/s11280-022-01073-8