A modified whale optimization algorithm with multi-strategy mechanism for global optimization problems

Whale Optimization Algorithm (WOA) is an outstanding nature-inspired algorithm widely used to solve many complex engineering optimization problems. However, WOA has a poor balance in exploration and exploitation, which converges to local optimum easily. This article proposes a Modified Whale Optimiz...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Neural computing & applications Ročník 37; číslo 27; s. 22339 - 22352
Hlavní autori: Li, Mingyuan, Yu, Xiaobing, Fu, Bingbing, Wang, Xuming
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: London Springer London 01.09.2025
Springer Nature B.V
Predmet:
ISSN:0941-0643, 1433-3058
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Whale Optimization Algorithm (WOA) is an outstanding nature-inspired algorithm widely used to solve many complex engineering optimization problems. However, WOA has a poor balance in exploration and exploitation, which converges to local optimum easily. This article proposes a Modified Whale Optimization Algorithm (MWOA) with multi-strategy mechanism, which introduces the elite reverse learning strategy, nonlinear convergence factor, DE/rand/1 mutation strategy and Lévy flight disturbance strategy. MWOA can improve the convergent ability and maintain the balance of exploitation and exploration to avoid local optimum. Compared with WOA, PSO, MFO, SOA, SCA and other four WOA variants on the CEC2017 benchmark suite, MWOA has strong competitiveness and can better improve the efficiency of WOA according to the experimental results and analysis.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0941-0643
1433-3058
DOI:10.1007/s00521-023-08287-5