Bayesian parameter estimation using conditional variational autoencoders for gravitational-wave astronomy

With the improving sensitivity of the global network of gravitational-wave detectors, we expect to observe hundreds of transient gravitational-wave events per year. The current methods used to estimate their source parameters employ optimally sensitive but computationally costly Bayesian inference a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature physics Jg. 18; H. 1; S. 112 - 117
Hauptverfasser: Gabbard, Hunter, Messenger, Chris, Heng, Ik Siong, Tonolini, Francesco, Murray-Smith, Roderick
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London Nature Publishing Group UK 01.01.2022
Nature Publishing Group
Schlagworte:
ISSN:1745-2473, 1745-2481
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract With the improving sensitivity of the global network of gravitational-wave detectors, we expect to observe hundreds of transient gravitational-wave events per year. The current methods used to estimate their source parameters employ optimally sensitive but computationally costly Bayesian inference approaches, where typical analyses have taken between 6 h and 6 d. For binary neutron star and neutron star–black hole systems prompt counterpart electromagnetic signatures are expected on timescales between 1 s and 1 min. However, the current fastest method for alerting electromagnetic follow-up observers can provide estimates in of the order of 1 min on a limited range of key source parameters. Here, we show that a conditional variational autoencoder pretrained on binary black hole signals can return Bayesian posterior probability estimates. The training procedure need only be performed once for a given prior parameter space and the resulting trained machine can then generate samples describing the posterior distribution around six orders of magnitude faster than existing techniques. A method for estimating the source properties of gravitational-wave events shows a speed-up of six orders of magnitude over established approaches. This is a promising tool for follow-up observations of electromagnetic counterparts.
AbstractList With the improving sensitivity of the global network of gravitational-wave detectors, we expect to observe hundreds of transient gravitational-wave events per year. The current methods used to estimate their source parameters employ optimally sensitive but computationally costly Bayesian inference approaches, where typical analyses have taken between 6 h and 6 d. For binary neutron star and neutron star–black hole systems prompt counterpart electromagnetic signatures are expected on timescales between 1 s and 1 min. However, the current fastest method for alerting electromagnetic follow-up observers can provide estimates in of the order of 1 min on a limited range of key source parameters. Here, we show that a conditional variational autoencoder pretrained on binary black hole signals can return Bayesian posterior probability estimates. The training procedure need only be performed once for a given prior parameter space and the resulting trained machine can then generate samples describing the posterior distribution around six orders of magnitude faster than existing techniques. A method for estimating the source properties of gravitational-wave events shows a speed-up of six orders of magnitude over established approaches. This is a promising tool for follow-up observations of electromagnetic counterparts.
With the improving sensitivity of the global network of gravitational-wave detectors, we expect to observe hundreds of transient gravitational-wave events per year. The current methods used to estimate their source parameters employ optimally sensitive but computationally costly Bayesian inference approaches, where typical analyses have taken between 6 h and 6 d. For binary neutron star and neutron star–black hole systems prompt counterpart electromagnetic signatures are expected on timescales between 1 s and 1 min. However, the current fastest method for alerting electromagnetic follow-up observers can provide estimates in of the order of 1 min on a limited range of key source parameters. Here, we show that a conditional variational autoencoder pretrained on binary black hole signals can return Bayesian posterior probability estimates. The training procedure need only be performed once for a given prior parameter space and the resulting trained machine can then generate samples describing the posterior distribution around six orders of magnitude faster than existing techniques.A method for estimating the source properties of gravitational-wave events shows a speed-up of six orders of magnitude over established approaches. This is a promising tool for follow-up observations of electromagnetic counterparts.
Author Messenger, Chris
Heng, Ik Siong
Tonolini, Francesco
Gabbard, Hunter
Murray-Smith, Roderick
Author_xml – sequence: 1
  givenname: Hunter
  orcidid: 0000-0002-9308-4738
  surname: Gabbard
  fullname: Gabbard, Hunter
  email: hunter.gabbard@gmail.com
  organization: SUPA, School of Physics and Astronomy, University of Glasgow
– sequence: 2
  givenname: Chris
  orcidid: 0000-0001-7488-5022
  surname: Messenger
  fullname: Messenger, Chris
  organization: SUPA, School of Physics and Astronomy, University of Glasgow
– sequence: 3
  givenname: Ik Siong
  surname: Heng
  fullname: Heng, Ik Siong
  organization: SUPA, School of Physics and Astronomy, University of Glasgow
– sequence: 4
  givenname: Francesco
  surname: Tonolini
  fullname: Tonolini, Francesco
  organization: School of Computing Science, University of Glasgow
– sequence: 5
  givenname: Roderick
  orcidid: 0000-0003-4228-7962
  surname: Murray-Smith
  fullname: Murray-Smith, Roderick
  organization: School of Computing Science, University of Glasgow
BookMark eNp9kE1PwzAMhiM0JLbBH-AUiXMgH23aHmHiS5rEBc6R26ZTpi0ZSTq0f09GK5A47GRb9mP7fWdoYp3VCF0zesuoKO9CxnJZEMoZoSzjOSnO0JQVWU54VrLJb16ICzQLYU1pxiUTU2Qe4KCDAYt34GGro_ZYh2i2EI2zuA_GrnDjbGuONWzwHryBMYc-Om0b12ofcOc8XnnYmzi2yRfsNYYQvbNue7hE5x1sgr4a4xx9PD2-L17I8u35dXG_JI1gVSRlx6HmtSwqUTW8lRltgOYSdNdKgFYAA13LJq94SXVZtCCFZnVFqyQbyo6JOboZ9u68--yTFrV2vU__BMUlZyxNpt1zxIepxrsQvO7UzifR_qAYVUdL1WCpSpaqH0tVkaDyH9SMaqMHszmNigEN6Y5daf_31QnqG9V1kHM
CitedBy_id crossref_primary_10_1007_s41114_024_00055_8
crossref_primary_10_1016_j_proci_2024_105590
crossref_primary_10_3847_1538_4357_ac4508
crossref_primary_10_3847_1538_4357_accffb
crossref_primary_10_3847_2041_8213_ade42f
crossref_primary_10_1103_PhysRevD_105_024024
crossref_primary_10_1103_PhysRevD_106_024025
crossref_primary_10_1088_1475_7516_2023_12_001
crossref_primary_10_1088_2632_2153_ad8b94
crossref_primary_10_3847_1538_3881_add2f1
crossref_primary_10_1088_2632_2153_ad8982
crossref_primary_10_1088_1361_6382_add233
crossref_primary_10_1016_j_apenergy_2023_122106
crossref_primary_10_1038_s43588_022_00288_z
crossref_primary_10_1088_2632_2153_ad0938
crossref_primary_10_1016_j_aej_2024_08_059
crossref_primary_10_1016_j_physletb_2024_139016
crossref_primary_10_1103_PhysRevD_106_083003
crossref_primary_10_3847_1538_4357_acd050
crossref_primary_10_1088_1361_6382_adb2d5
crossref_primary_10_1103_PhysRevD_111_024035
crossref_primary_10_1051_0004_6361_202450381
crossref_primary_10_1109_JETCAS_2024_3389660
crossref_primary_10_1109_TPWRS_2021_3107515
crossref_primary_10_3847_1538_4357_ad4602
crossref_primary_10_1088_2632_2153_ad8da9
crossref_primary_10_3847_1538_4357_ad6984
crossref_primary_10_3847_1538_4357_ad8888
crossref_primary_10_1016_j_nima_2023_168492
crossref_primary_10_1103_PhysRevResearch_4_023006
crossref_primary_10_1088_1367_2630_ad4204
crossref_primary_10_1002_smll_202300053
crossref_primary_10_1103_PhysRevD_108_064055
crossref_primary_10_1103_c66v_rl3w
crossref_primary_10_1103_PhysRevD_110_104034
crossref_primary_10_1016_j_physletb_2022_137505
crossref_primary_10_1016_j_bpj_2025_06_010
crossref_primary_10_1016_j_softx_2025_102080
crossref_primary_10_1103_PhysRevD_111_024067
crossref_primary_10_1088_1361_6382_ad8f26
crossref_primary_10_1103_PhysRevC_110_054609
crossref_primary_10_1016_j_ascom_2022_100683
crossref_primary_10_1017_pasa_2021_64
crossref_primary_10_3847_1538_4357_ad08b7
crossref_primary_10_3847_2041_8213_ad0ed4
crossref_primary_10_3390_universe9090407
crossref_primary_10_1103_PhysRevD_107_024040
crossref_primary_10_1103_PhysRevD_111_063037
crossref_primary_10_3847_1538_4357_acc100
crossref_primary_10_1007_s11433_023_2270_7
crossref_primary_10_1038_s41586_025_08593_z
crossref_primary_10_1088_1361_6382_acd981
crossref_primary_10_1103_8r8b_hckx
crossref_primary_10_1007_s10714_024_03216_w
crossref_primary_10_1088_1475_7516_2025_04_022
crossref_primary_10_1016_j_bpj_2024_11_3310
crossref_primary_10_1038_s41586_023_06221_2
crossref_primary_10_3847_1538_4357_ad496a
crossref_primary_10_1088_2632_2153_acd5aa
crossref_primary_10_3389_fdata_2022_787421
crossref_primary_10_1038_s42005_023_01334_6
crossref_primary_10_1103_PhysRevD_110_103041
crossref_primary_10_1088_1361_6382_adfd33
crossref_primary_10_1103_PhysRevD_111_024019
crossref_primary_10_1088_2632_2153_ad2972
crossref_primary_10_1103_xk1z_fxnm
crossref_primary_10_1088_1674_1137_adb306
crossref_primary_10_3389_frai_2022_828672
crossref_primary_10_1088_1674_1137_ad2a5f
crossref_primary_10_1103_PhysRevD_111_084067
crossref_primary_10_1016_j_eswa_2023_123129
crossref_primary_10_1038_s41550_022_01651_w
crossref_primary_10_1109_LCSYS_2023_3344286
crossref_primary_10_1103_PhysRevD_111_063065
crossref_primary_10_3847_1538_4357_ac4bc0
crossref_primary_10_1038_s41567_021_01436_4
Cites_doi 10.3847/2041-8213/ab75f5
10.1007/s41114-018-0012-9
10.1016/j.physletb.2017.12.053
10.1103/PhysRevLett.124.041102
10.3847/1538-4365/ab06fc
10.1109/TIT.2009.2016060
10.1088/1361-6382/aa5cea
10.1103/PhysRevD.93.024013
10.1093/mnras/staa278
10.1093/mnras/stv2422
10.1103/PhysRevD.92.023002
10.1103/PhysRevLett.120.141103
10.1103/PhysRevD.91.084034
10.1214/06-BA127
10.1086/670067
10.1103/PhysRevD.100.024059
10.1103/PhysRevLett.119.161101
10.1103/PhysRevD.91.042003
10.1103/PhysRevD.102.104057
10.1103/PhysRevD.94.044031
10.1088/1361-6382/aa5a60
10.1103/PhysRevD.100.043030
10.1016/j.patcog.2020.107501
10.1093/mnras/stv1584
10.1088/2632-2153/abfaed
10.1073/pnas.1912789117
10.3847/2041-8213/ac082e
10.1103/PhysRevD.99.084026
10.1088/0264-9381/26/15/155017
10.1109/CVPR.2017.374
10.1007/978-3-319-46493-0_47
10.5281/zenodo.4470001
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Limited 2021
The Author(s), under exclusive licence to Springer Nature Limited 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Limited 2021
– notice: The Author(s), under exclusive licence to Springer Nature Limited 2021.
DBID AAYXX
CITATION
3V.
7U5
7XB
88I
8FD
8FE
8FG
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
DWQXO
GNUQQ
HCIFZ
L7M
M2P
P5Z
P62
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOI 10.1038/s41567-021-01425-7
DatabaseName CrossRef
ProQuest Central (Corporate)
Solid State and Superconductivity Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
Advanced Technologies Database with Aerospace
Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList
ProQuest Central Student
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1745-2481
EndPage 117
ExternalDocumentID 10_1038_s41567_021_01425_7
GrantInformation_xml – fundername: - EPSRC grants EP/M01326X/1, EP/T00097X/1 and EP/R018634/1.
– fundername: - Amazon Research - EPSRC grant EP/M01326X/1
– fundername: - Science and Technology Facilities Council of the United Kingdom - Science and Technology Research Council (grant No. ST/ L000946/1) - European Cooperation in Science and Technology (COST) action CA17137
GroupedDBID 0R~
123
29M
39C
3V.
4.4
5BI
5M7
6OB
70F
88I
8FE
8FG
8FH
8R4
8R5
AAEEF
AARCD
AAYZH
AAZLF
ABAWZ
ABDBF
ABJNI
ABLJU
ABUWG
ABZEH
ACBWK
ACGFO
ACGFS
ACGOD
ACMJI
ACUHS
ADBBV
ADFRT
AENEX
AEUYN
AFBBN
AFKRA
AFSHS
AFWHJ
AGAYW
AGHTU
AHBCP
AHOSX
AHSBF
AIBTJ
ALFFA
ALMA_UNASSIGNED_HOLDINGS
AMTXH
ARAPS
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
BENPR
BGLVJ
BHPHI
BKKNO
BKSAR
BPHCQ
CCPQU
DB5
DU5
DWQXO
EBS
EE.
EJD
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
GNUQQ
HCIFZ
HVGLF
HZ~
I-F
LGEZI
LK5
LOTEE
M2P
M7R
N9A
NADUK
NNMJJ
NXXTH
O9-
ODYON
P2P
P62
PCBAR
PQQKQ
PROAC
Q2X
RNS
RNT
RNTTT
SHXYY
SIXXV
SJN
SNYQT
SOJ
TAOOD
TBHMF
TDRGL
TSG
TUS
~8M
AAYXX
ABFSG
ACSTC
AEZWR
AFANA
AFHIU
AGSTI
AHWEU
AIXLP
ALPWD
ATHPR
CITATION
7U5
7XB
8FD
8FK
L7M
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQUKI
Q9U
ID FETCH-LOGICAL-c319t-8f2ab2b67939c2d640ca056aefd6aad3a1aeb6c59280e87da63e1b909142a8f13
IEDL.DBID BENPR
ISICitedReferencesCount 125
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000733431000006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1745-2473
IngestDate Sat Aug 23 13:20:28 EDT 2025
Sat Nov 29 01:38:10 EST 2025
Tue Nov 18 22:27:33 EST 2025
Fri Feb 21 02:38:00 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-8f2ab2b67939c2d640ca056aefd6aad3a1aeb6c59280e87da63e1b909142a8f13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4228-7962
0000-0001-7488-5022
0000-0002-9308-4738
PQID 2621109179
PQPubID 27545
PageCount 6
ParticipantIDs proquest_journals_2621109179
crossref_primary_10_1038_s41567_021_01425_7
crossref_citationtrail_10_1038_s41567_021_01425_7
springer_journals_10_1038_s41567_021_01425_7
PublicationCentury 2000
PublicationDate 2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Nature physics
PublicationTitleAbbrev Nat. Phys
PublicationYear 2022
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Green, Gair (CR17) 2021; 2
Pankow, Brady, Ochsner, O’Shaughnessy (CR35) 2015; 92
Chua, Vallisneri (CR15) 2020; 124
Veitch (CR10) 2015; 91
Graff, Feroz, Hobson, Lasenby (CR14) 2012; 421
Searle, Sutton, Tinto (CR4) 2009; 26
Foreman-Mackey, Hogg, Lang, Goodman (CR8) 2013; 125
Cranmer, Brehmer, Louppe (CR18) 2020; 117
Abbott (CR27) 2020; 892
CR37
CR36
Zevin (CR12) 2017; 34
Abbott (CR26) 2017; 119
Khan, Chatziioannou, Hannam, Ohme (CR25) 2019; 100
Coughlin (CR13) 2017; 34
Singer, Price (CR29) 2016; 93
Ashton (CR11) 2019; 241
Speagle (CR7) 2020; 493
Green, Simpson, Gair (CR16) 2020; 102
Littenberg, Cornish (CR31) 2015; 91
Skilling (CR5) 2006; 1
Tonolini, Radford, Turpin, Faccio, Murray-Smith (CR19) 2020; 21
Abbott (CR30) 2018; 21
Vousden, Farr, Mandel (CR9) 2016; 455
Talbot, Smith, Thrane, Poole (CR34) 2019; 100
CR3
Wysocki, O’Shaughnessy, Lange, Fang (CR33) 2019; 99
CR6
Smith (CR32) 2016; 94
CR24
Jones (CR38) 2015; 453
CR22
Wang, Kulkarni, Verdu (CR39) 2009; 55
CR21
Gabbard, Williams, Hayes, Messenger (CR2) 2018; 120
CR20
Nazábal, Olmos, Ghahramani, Valera (CR23) 2020; 107
Abbott (CR28) 2021; 915
George, Huerta (CR1) 2018; 778
SR Green (1425_CR17) 2021; 2
1425_CR6
D Wysocki (1425_CR33) 2019; 99
1425_CR3
AC Searle (1425_CR4) 2009; 26
LP Singer (1425_CR29) 2016; 93
F Tonolini (1425_CR19) 2020; 21
H Gabbard (1425_CR2) 2018; 120
C Talbot (1425_CR34) 2019; 100
SR Green (1425_CR16) 2020; 102
BP Abbott (1425_CR26) 2017; 119
1425_CR36
DI Jones (1425_CR38) 2015; 453
WD Vousden (1425_CR9) 2016; 455
1425_CR37
D Foreman-Mackey (1425_CR8) 2013; 125
R Smith (1425_CR32) 2016; 94
P Graff (1425_CR14) 2012; 421
M Coughlin (1425_CR13) 2017; 34
C Pankow (1425_CR35) 2015; 92
JS Speagle (1425_CR7) 2020; 493
TB Littenberg (1425_CR31) 2015; 91
Q Wang (1425_CR39) 2009; 55
J Veitch (1425_CR10) 2015; 91
J Skilling (1425_CR5) 2006; 1
1425_CR22
D George (1425_CR1) 2018; 778
AJK Chua (1425_CR15) 2020; 124
M Zevin (1425_CR12) 2017; 34
1425_CR24
R Abbott (1425_CR28) 2021; 915
S Khan (1425_CR25) 2019; 100
A Nazábal (1425_CR23) 2020; 107
G Ashton (1425_CR11) 2019; 241
BP Abbott (1425_CR27) 2020; 892
K Cranmer (1425_CR18) 2020; 117
BP Abbott (1425_CR30) 2018; 21
1425_CR21
1425_CR20
References_xml – ident: CR22
– volume: 21
  start-page: 1
  year: 2020
  end-page: 46
  ident: CR19
  article-title: Variational inference for computational imaging inverse problems
  publication-title: J. Mach. Learning Res.
– volume: 892
  start-page: L3
  year: 2020
  ident: CR27
  article-title: GW190425: observation of a compact binary coalescence with total mass ~3.4 M
  publication-title: Astrophys. J. Lett.
  doi: 10.3847/2041-8213/ab75f5
– volume: 21
  year: 2018
  ident: CR30
  article-title: Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA
  publication-title: Living Rev. Relativ.
  doi: 10.1007/s41114-018-0012-9
– volume: 778
  start-page: 64–70
  year: 2018
  ident: CR1
  article-title: Deep learning for real-time gravitational wave detection and parameter estimation: results with advanced LIGO data
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2017.12.053
– volume: 124
  start-page: 041102
  year: 2020
  ident: CR15
  article-title: Learning Bayesian posteriors with neural networks for gravitational-wave inference
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.124.041102
– volume: 241
  start-page: 27
  year: 2019
  ident: CR11
  article-title: Bilby: a user-friendly Bayesian inference library for gravitational-wave astronomy
  publication-title: Astrophys. J. Suppl. Ser.
  doi: 10.3847/1538-4365/ab06fc
– ident: CR37
– volume: 55
  start-page: 2392
  year: 2009
  end-page: 2405
  ident: CR39
  article-title: Divergence estimation for multidimensional densities via -nearest-neighbor distances
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2009.2016060
– volume: 34
  start-page: 064003
  year: 2017
  ident: CR12
  article-title: Gravity spy: integrating advanced LIGO detector characterization, machine learning, and citizen science
  publication-title: Class. Quantum Gravity
  doi: 10.1088/1361-6382/aa5cea
– volume: 93
  start-page: 024013
  year: 2016
  ident: CR29
  article-title: Rapid Bayesian position reconstruction for gravitational-wave transients
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.93.024013
– volume: 493
  start-page: 3132
  year: 2020
  end-page: 3158
  ident: CR7
  article-title: dynesty: a dynamic nested sampling package for estimating Bayesian posteriors and evidences
  publication-title: Mon. Not. R. Astron. Soc.
  doi: 10.1093/mnras/staa278
– ident: CR6
– volume: 455
  start-page: 1919
  year: 2016
  end-page: 1937
  ident: CR9
  article-title: Dynamic temperature selection for parallel tempering in Markov chain Monte Carlo simulations
  publication-title: Mon. Not. R. Astron. Soc.
  doi: 10.1093/mnras/stv2422
– volume: 92
  start-page: 023002
  year: 2015
  ident: CR35
  article-title: Novel scheme for rapid parallel parameter estimation of gravitational waves from compact binary coalescences
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.92.023002
– volume: 120
  start-page: 141103
  year: 2018
  ident: CR2
  article-title: Matching matched filtering with deep networks for gravitational-wave astronomy
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.120.141103
– volume: 91
  start-page: 084034
  year: 2015
  ident: CR31
  article-title: Bayesian inference for spectral estimation of gravitational wave detector noise
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.91.084034
– volume: 1
  start-page: 833
  year: 2006
  end-page: 859
  ident: CR5
  article-title: Nested sampling for general Bayesian computation
  publication-title: Bayesian Anal.
  doi: 10.1214/06-BA127
– volume: 125
  start-page: 306
  year: 2013
  end-page: 312
  ident: CR8
  article-title: emcee: the MCMC hammer
  publication-title: Publ. Astron. Soc. Pac.
  doi: 10.1086/670067
– ident: CR21
– volume: 100
  start-page: 024059
  year: 2019
  ident: CR25
  article-title: Phenomenological model for the gravitational-wave signal from precessing binary black holes with two-spin effects
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.100.024059
– volume: 421
  start-page: 169
  year: 2012
  end-page: 180
  ident: CR14
  article-title: BAMBI: blind accelerated multimodal Bayesian inference
  publication-title: Mon. Not. R. Astron. Soc.
– volume: 119
  start-page: 161101
  year: 2017
  ident: CR26
  article-title: GW170817: observation of gravitational waves from a binary neutron star inspiral
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.119.161101
– volume: 91
  start-page: 042003
  year: 2015
  ident: CR10
  article-title: Parameter estimation for compact binaries with ground-based gravitational-wave observations using the LALInference software library
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.91.042003
– ident: CR3
– volume: 102
  start-page: 104057
  year: 2020
  ident: CR16
  article-title: Gravitational-wave parameter estimation with autoregressive neural network flows
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.102.104057
– volume: 94
  start-page: 044031
  year: 2016
  ident: CR32
  article-title: Fast and accurate inference on gravitational waves from precessing compact binaries
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.94.044031
– volume: 34
  start-page: 044004
  year: 2017
  ident: CR13
  article-title: Limiting the effects of earthquakes on gravitational-wave interferometers
  publication-title: Class. Quantum Gravity
  doi: 10.1088/1361-6382/aa5a60
– volume: 100
  start-page: 043030
  year: 2019
  ident: CR34
  article-title: Parallelized inference for gravitational-wave astronomy
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.100.043030
– volume: 107
  start-page: 107501
  year: 2020
  ident: CR23
  article-title: Handling incomplete heterogeneous data using VAEs
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2020.107501
– ident: CR36
– volume: 453
  start-page: 53
  year: 2015
  end-page: 66
  ident: CR38
  article-title: Parameter choices and ranges for continuous gravitational wave searches for steadily spinning neutron stars
  publication-title: Mon. Not. R. Astron. Soc.
  doi: 10.1093/mnras/stv1584
– volume: 2
  start-page: 03LT01
  year: 2021
  ident: CR17
  article-title: Complete parameter inference for GW150914 using deep learning
  publication-title: Mach. Learning Sci. Technol.
  doi: 10.1088/2632-2153/abfaed
– volume: 117
  start-page: 30055
  year: 2020
  end-page: 30062
  ident: CR18
  article-title: The frontier of simulation-based inference
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1912789117
– volume: 915
  start-page: L5
  year: 2021
  ident: CR28
  article-title: Observation of gravitational waves from two neutron star–black hole coalescences
  publication-title: Astrophys. J. Lett.
  doi: 10.3847/2041-8213/ac082e
– ident: CR24
– volume: 99
  start-page: 084026
  year: 2019
  ident: CR33
  article-title: Accelerating parameter inference with graphics processing units
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.99.084026
– ident: CR20
– volume: 26
  start-page: 155017
  year: 2009
  ident: CR4
  article-title: Bayesian detection of unmodeled bursts of gravitational waves
  publication-title: Class. Quantum Gravity
  doi: 10.1088/0264-9381/26/15/155017
– volume: 100
  start-page: 043030
  year: 2019
  ident: 1425_CR34
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.100.043030
– volume: 99
  start-page: 084026
  year: 2019
  ident: 1425_CR33
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.99.084026
– volume: 892
  start-page: L3
  year: 2020
  ident: 1425_CR27
  publication-title: Astrophys. J. Lett.
  doi: 10.3847/2041-8213/ab75f5
– volume: 94
  start-page: 044031
  year: 2016
  ident: 1425_CR32
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.94.044031
– volume: 26
  start-page: 155017
  year: 2009
  ident: 1425_CR4
  publication-title: Class. Quantum Gravity
  doi: 10.1088/0264-9381/26/15/155017
– volume: 102
  start-page: 104057
  year: 2020
  ident: 1425_CR16
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.102.104057
– ident: 1425_CR37
– volume: 421
  start-page: 169
  year: 2012
  ident: 1425_CR14
  publication-title: Mon. Not. R. Astron. Soc.
– volume: 107
  start-page: 107501
  year: 2020
  ident: 1425_CR23
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2020.107501
– volume: 34
  start-page: 044004
  year: 2017
  ident: 1425_CR13
  publication-title: Class. Quantum Gravity
  doi: 10.1088/1361-6382/aa5a60
– ident: 1425_CR3
– volume: 125
  start-page: 306
  year: 2013
  ident: 1425_CR8
  publication-title: Publ. Astron. Soc. Pac.
  doi: 10.1086/670067
– volume: 55
  start-page: 2392
  year: 2009
  ident: 1425_CR39
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2009.2016060
– volume: 493
  start-page: 3132
  year: 2020
  ident: 1425_CR7
  publication-title: Mon. Not. R. Astron. Soc.
  doi: 10.1093/mnras/staa278
– volume: 21
  start-page: 1
  year: 2020
  ident: 1425_CR19
  publication-title: J. Mach. Learning Res.
– ident: 1425_CR20
– volume: 91
  start-page: 084034
  year: 2015
  ident: 1425_CR31
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.91.084034
– volume: 91
  start-page: 042003
  year: 2015
  ident: 1425_CR10
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.91.042003
– ident: 1425_CR24
– volume: 119
  start-page: 161101
  year: 2017
  ident: 1425_CR26
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.119.161101
– volume: 1
  start-page: 833
  year: 2006
  ident: 1425_CR5
  publication-title: Bayesian Anal.
  doi: 10.1214/06-BA127
– volume: 778
  start-page: 64–70
  year: 2018
  ident: 1425_CR1
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2017.12.053
– volume: 120
  start-page: 141103
  year: 2018
  ident: 1425_CR2
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.120.141103
– volume: 241
  start-page: 27
  year: 2019
  ident: 1425_CR11
  publication-title: Astrophys. J. Suppl. Ser.
  doi: 10.3847/1538-4365/ab06fc
– volume: 92
  start-page: 023002
  year: 2015
  ident: 1425_CR35
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.92.023002
– ident: 1425_CR36
– volume: 453
  start-page: 53
  year: 2015
  ident: 1425_CR38
  publication-title: Mon. Not. R. Astron. Soc.
  doi: 10.1093/mnras/stv1584
– volume: 34
  start-page: 064003
  year: 2017
  ident: 1425_CR12
  publication-title: Class. Quantum Gravity
  doi: 10.1088/1361-6382/aa5cea
– volume: 124
  start-page: 041102
  year: 2020
  ident: 1425_CR15
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.124.041102
– volume: 93
  start-page: 024013
  year: 2016
  ident: 1425_CR29
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.93.024013
– volume: 2
  start-page: 03LT01
  year: 2021
  ident: 1425_CR17
  publication-title: Mach. Learning Sci. Technol.
  doi: 10.1088/2632-2153/abfaed
– ident: 1425_CR22
  doi: 10.1109/CVPR.2017.374
– volume: 117
  start-page: 30055
  year: 2020
  ident: 1425_CR18
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1912789117
– ident: 1425_CR21
  doi: 10.1007/978-3-319-46493-0_47
– volume: 455
  start-page: 1919
  year: 2016
  ident: 1425_CR9
  publication-title: Mon. Not. R. Astron. Soc.
  doi: 10.1093/mnras/stv2422
– volume: 100
  start-page: 024059
  year: 2019
  ident: 1425_CR25
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.100.024059
– volume: 915
  start-page: L5
  year: 2021
  ident: 1425_CR28
  publication-title: Astrophys. J. Lett.
  doi: 10.3847/2041-8213/ac082e
– ident: 1425_CR6
  doi: 10.5281/zenodo.4470001
– volume: 21
  year: 2018
  ident: 1425_CR30
  publication-title: Living Rev. Relativ.
  doi: 10.1007/s41114-018-0012-9
SSID ssj0042613
Score 2.6962192
Snippet With the improving sensitivity of the global network of gravitational-wave detectors, we expect to observe hundreds of transient gravitational-wave events per...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 112
SubjectTerms 639/766/34/4123
639/766/34/861
Astronomy
Atomic
Bayesian analysis
Binary stars
Black holes
Classical and Continuum Physics
Complex Systems
Condensed Matter Physics
Conditional probability
Cost analysis
Estimates
Gravitational waves
Mathematical and Computational Physics
Molecular
Neutron stars
Optical and Plasma Physics
Parameter estimation
Parameter sensitivity
Physics
Physics and Astronomy
Statistical inference
Theoretical
Title Bayesian parameter estimation using conditional variational autoencoders for gravitational-wave astronomy
URI https://link.springer.com/article/10.1038/s41567-021-01425-7
https://www.proquest.com/docview/2621109179
Volume 18
WOSCitedRecordID wos000733431000006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1745-2481
  dateEnd: 20221231
  omitProxy: false
  ssIdentifier: ssj0042613
  issn: 1745-2473
  databaseCode: P5Z
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 1745-2481
  dateEnd: 20221231
  omitProxy: false
  ssIdentifier: ssj0042613
  issn: 1745-2473
  databaseCode: PCBAR
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1745-2481
  dateEnd: 20221231
  omitProxy: false
  ssIdentifier: ssj0042613
  issn: 1745-2473
  databaseCode: BENPR
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1745-2481
  dateEnd: 20221231
  omitProxy: false
  ssIdentifier: ssj0042613
  issn: 1745-2473
  databaseCode: M2P
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB2VhUpcoEBRt6XIB26tRWxnHfuECgL10tWqAgn1Ek1sB60Eu5Qsi_j39SROV61ULr3kksRyMmN73nw9gKPc17WIxxwvTK44RZq49UXOg5DaOytspeuWbKIYj831tZ0kh1uT0ir7PbHdqP3ckY_8WGqCKhFc2JP7n5xYoyi6mig01mCdOpXlA1g_PR9Pvvd7MeED1ZVEjrjMC5XKZjJljhuCLgWnFIUIE4jU9c-jaWVv_hUibU-ei-3_nfMb2Eo2J_vSKckOvAqzXXjd5n66Zg-mp_gcqJaSUR_wO8qPYdR7oytqZJQZf8MibPbTzm_IlhFfJx8iw8fFnHphUj40iwYwIz6j1Pcbb_kTLgPDhvzt87vnt3B1cX559pUnBgbu4tJccFNLrGSl4yK2TnqdZw6jxYSh9hrRKxQYKu1GVposmMKjVkFUNn5yLtHUQu3DYDafhXfAUARj3Mi4qAO5xWio6sxlQXmBrqjQDUH0P790aZrEknFbtmFyZcpOYGUUWNkKrCyG8On3O_ddc44Xnz7opVSmhdqUKxEN4XMv59Xtf4_2_uXRPsCmpEKJ1llzAIPFw2P4CBtuuZg2D4dJTQ9h7ZucxOtk9OMXoSPxmg
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB61hQouvArqQgEf4ARWEzvrOAeEeFWt2q56KFJvZmI7aKV20262W-2f4jficRJWINFbDz0ncRL783i-eQK8yVxVpeGY47nOJCdPEy9cnnGfCuVskRalqmKziXw00icnxdEK_OpzYSisspeJUVC72pKNfFsooiqBXBQfzy84dY0i72rfQqOFxb5fXAXK1nzY-xrW960QO9-Ov-zyrqsAtwFuM64rgaUoVQBmYYVTWWIxaAHoK6cQncQUfanssBA68Tp3qKRPyyK8OhOoq1SGcVfhThaYEO2rQ3HUS35iI7JNwBxykeWyS9JJpN5uiCjlnAIiAimhFrJ_H4RL7fYfh2w853Ye3rYZegQPOo2afWq3wGNY8ZMnsB4jW22zAePPuPCUKcqoyvkZRf8wqizSpmwyivv_yWxNnvtoFWVznI47CynDy1lNlT4p2psF9Z5Rt6auqjme8iuce4YNeRPqs8VT-H4j__kM1ib1xG8Cw9RrbYfaBoRnBQY1XCU28dKlaPMS7QDSfrGN7T6TeoCcmhgEILVpAWICQEwEiMkH8O7PM-dt6ZFr797qUWE6MdSYJSQG8L7H1fLy_0d7fv1or-He7vHhgTnYG-2_gPuCUkKiWWoL1mbTS_8S7tr5bNxMX8UNwuDHTePtN82YTIs
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6V8lAvPItYKOADnMDaxM469gEhoKyoilZ7AKniYia2g1ZqN-1mu9X-NX4dnjxYgURvPXCOYznxZ897PoAXmS_LNIo5nutMcoo0cePzjIdUKO9MagpVNmQT-WSij47MdAt-9rUwlFbZ34nNRe0rRz7yoVBkqkTjwgzLLi1iuj9-e3rGiUGKIq09nUYLkcOwvojmW_3mYD_u9Ushxh-_fPjEO4YB7iL0llyXAgtRqAhS44RXWeIwagQYSq8QvcQUQ6HcyAidBJ17VDKkhYnLyATqMpVx3mtwPY82Jp2u6ehbLwXIMpFtMeaIiyyXXcFOIvWwJqMp55QcEQ0UopP9UyhuNN2_grONzBvf-Z__1l243Wna7F17NO7BVpjfh5tNxqurH8DsPa4DVZAy6n5-QllBjDqOtKWcjOoBfjBXUUS_8ZayFS5mneeU4fmyog6glAXOotrPiMWp63aOx_wCV4FhTVGG6mS9C1-v5Dsfwva8modHwDANWruRdhH5mcGonqvEJUH6FF1eoBtA2m-8dd0yiRvk2DbJAVLbFiw2gsU2YLH5AF79fue0bUly6ei9HiG2u55qu4HHAF73GNs8_vdsjy-f7TncijCznw8mh09gR1ClSOOt2oPt5eI8PIUbbrWc1YtnzVlh8P2q4fYLkXJVdw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bayesian+parameter+estimation+using+conditional+variational+autoencoders+for+gravitational-wave+astronomy&rft.jtitle=Nature+physics&rft.au=Gabbard+Hunter&rft.au=Messenger%2C+Chris&rft.au=Heng%2C+Ik+Siong&rft.au=Tonolini+Francesco&rft.date=2022-01-01&rft.pub=Nature+Publishing+Group&rft.issn=1745-2473&rft.eissn=1745-2481&rft.volume=18&rft.issue=1&rft.spage=112&rft.epage=117&rft_id=info:doi/10.1038%2Fs41567-021-01425-7&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1745-2473&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1745-2473&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1745-2473&client=summon