Strong convergence analysis of common variational inclusion problems involving an inertial parallel monotone hybrid method for a novel application to image restoration

In this paper, we propose inertial forward-backward splitting algorithm to approximate the solution of common variational inclusion problems. By using the inertial technique with parallel monotone hybrid methods we prove strong convergence results under some suitable conditions in Hilbert spaces. We...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas Ročník 114; číslo 2
Hlavní autori: Cholamjiak, Watcharaporn, Khan, Suhel Ahmad, Yambangwai, Damrongsak, Kazmi, Kaleem Raza
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Cham Springer International Publishing 01.04.2020
Springer Nature B.V
Predmet:
ISSN:1578-7303, 1579-1505
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In this paper, we propose inertial forward-backward splitting algorithm to approximate the solution of common variational inclusion problems. By using the inertial technique with parallel monotone hybrid methods we prove strong convergence results under some suitable conditions in Hilbert spaces. We then give some applications and numerical experiments for supporting our main results which shows that our proposed inertial hybrid method has better convergence rate than existing algorithms. Further, we apply our result to solve a common convex minimization problem and a common split feasibility problem. Finally, we use our proposed algorithm to solve the unconstrained image restoration problems and we can show that our algorithm is flexibility and good quality to use for common types of blur effects.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1578-7303
1579-1505
DOI:10.1007/s13398-020-00827-1