Multifractal detrended fluctuation analysis parallel optimization strategy based on openMP for image processing
In the past few years, multifractal detrended fluctuation analysis (MF-DFA) method has been widely applied in the field of agricultural image processing. However, the agricultural image feature MF-DFA analyses involves a great deal of iterative processes and complex matrix operations, which require...
Saved in:
| Published in: | Neural computing & applications Vol. 32; no. 10; pp. 5599 - 5608 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
London
Springer London
01.05.2020
Springer Nature B.V |
| Subjects: | |
| ISSN: | 0941-0643, 1433-3058 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | In the past few years, multifractal detrended fluctuation analysis (MF-DFA) method has been widely applied in the field of agricultural image processing. However, the agricultural image feature MF-DFA analyses involves a great deal of iterative processes and complex matrix operations, which require massive computation and processing time. In order to reduce processing time and improve analysis efficiency, we first develop a MF-DFA program that involves image preprocessing, image segmentation, local area accumulation matrix calculation, local area trend fitting, local area trend elimination, a global
q
th-order fluctuation function, and the Hurst index. Then, we analyze and compare MF-DFA each modules’ performance characteristics and explore its parallelism according to various segmentation scales
s
. Lastly, we propose a parallel optimization scheme based on OpenMP for the MF-DFA. The results of our rigorous performance evaluation clearly demonstrate that our proposed parallel optimization scheme can efficiently use multicore capability to extract rape leaf image texture characteristics. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0941-0643 1433-3058 |
| DOI: | 10.1007/s00521-019-04164-2 |