A Nonconforming Virtual Element Method for a Fourth-order Hemivariational Inequality in Kirchhoff Plate Problem
This paper is devoted to a fourth-order hemivariational inequality for a Kirchhoff plate problem. A solution existence and uniqueness result is proved for the hemivariational inequality through the analysis of a corresponding minimization problem. A nonconforming virtual element method is developed...
Uložené v:
| Vydané v: | Journal of scientific computing Ročník 90; číslo 3; s. 89 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
Springer US
01.03.2022
Springer Nature B.V |
| Predmet: | |
| ISSN: | 0885-7474, 1573-7691 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | This paper is devoted to a fourth-order hemivariational inequality for a Kirchhoff plate problem. A solution existence and uniqueness result is proved for the hemivariational inequality through the analysis of a corresponding minimization problem. A nonconforming virtual element method is developed to solve the hemivariational inequality. An optimal order error estimate in a broken
H
2
-norm is derived for the virtual element solutions under appropriate solution regularity assumptions. The discrete problem can be formulated as an optimization problem for a difference of two convex (DC) functions and a convergent algorithm is used to solve it. Computer simulation results on a numerical example are reported, providing numerical convergence orders that match the theoretical prediction. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0885-7474 1573-7691 |
| DOI: | 10.1007/s10915-022-01759-1 |