Toeplitz Operators with Vertical Symbols Acting on the Poly-Bergman Spaces of the Upper Half-Plane. II

In this work Toeplitz operators with vertical symbols and acting on the n -poly-Bergman space A n 2 ( Π ) are studied, where Π ⊂ C is the upper half-plane. A vertical symbol is a bounded measurable function on Π depending only on y = Im z and having limit values at y = 0 , + ∞ . We show that the C ∗...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Complex analysis and operator theory Ročník 13; číslo 5; s. 2443 - 2462
Hlavní autoři: Ortega, Josué Ramírez, del Rosario Ramírez Mora, María, Nungaray, Armando Sánchez
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cham Springer International Publishing 01.07.2019
Springer Nature B.V
Témata:
ISSN:1661-8254, 1661-8262
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this work Toeplitz operators with vertical symbols and acting on the n -poly-Bergman space A n 2 ( Π ) are studied, where Π ⊂ C is the upper half-plane. A vertical symbol is a bounded measurable function on Π depending only on y = Im z and having limit values at y = 0 , + ∞ . We show that the C ∗ -algebra generated by a finite number of Toeplitz operators with vertical symbols is isomorphic and isometric to the C ∗ -algebra consisting of all the matrix-valued functions M ( x ) ∈ M n ( C ) ⊗ C [ 0 , + ∞ ] such that M (0) and M ( + ∞ ) are scalar matrices. Alternatively, the upper half-plane can be endowed with the affine group structure, where the left-invariant Haar measure d μ = ( 1 / y 2 ) d x d y is taken into account. Then the poly-Bergman space A n 2 ( Π ) can be identified with a wavelet subspace A n - 1 + ⊂ L 2 ( Π , d μ ) . Thus, the study of Toeplitz operators on A n 2 ( Π ) , with vertical symbols, can be carried out on the wavelet space A n - 1 + using representation theory and wavelet analysis, as it is shown below. From this point of view, we also study Toeplitz operators on wavelet spaces on the direct product P = Π n , instead of using poly-analytic function spaces in several complex variables.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1661-8254
1661-8262
DOI:10.1007/s11785-019-00908-z