Toeplitz Operators with Vertical Symbols Acting on the Poly-Bergman Spaces of the Upper Half-Plane. II
In this work Toeplitz operators with vertical symbols and acting on the n -poly-Bergman space A n 2 ( Π ) are studied, where Π ⊂ C is the upper half-plane. A vertical symbol is a bounded measurable function on Π depending only on y = Im z and having limit values at y = 0 , + ∞ . We show that the C ∗...
Uloženo v:
| Vydáno v: | Complex analysis and operator theory Ročník 13; číslo 5; s. 2443 - 2462 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Cham
Springer International Publishing
01.07.2019
Springer Nature B.V |
| Témata: | |
| ISSN: | 1661-8254, 1661-8262 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In this work Toeplitz operators with vertical symbols and acting on the
n
-poly-Bergman space
A
n
2
(
Π
)
are studied, where
Π
⊂
C
is the upper half-plane. A vertical symbol is a bounded measurable function on
Π
depending only on
y
=
Im
z
and having limit values at
y
=
0
,
+
∞
. We show that the
C
∗
-algebra generated by a finite number of Toeplitz operators with vertical symbols is isomorphic and isometric to the
C
∗
-algebra consisting of all the matrix-valued functions
M
(
x
)
∈
M
n
(
C
)
⊗
C
[
0
,
+
∞
]
such that
M
(0) and
M
(
+
∞
)
are scalar matrices. Alternatively, the upper half-plane can be endowed with the affine group structure, where the left-invariant Haar measure
d
μ
=
(
1
/
y
2
)
d
x
d
y
is taken into account. Then the poly-Bergman space
A
n
2
(
Π
)
can be identified with a wavelet subspace
A
n
-
1
+
⊂
L
2
(
Π
,
d
μ
)
. Thus, the study of Toeplitz operators on
A
n
2
(
Π
)
, with vertical symbols, can be carried out on the wavelet space
A
n
-
1
+
using representation theory and wavelet analysis, as it is shown below. From this point of view, we also study Toeplitz operators on wavelet spaces on the direct product
P
=
Π
n
, instead of using poly-analytic function spaces in several complex variables. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1661-8254 1661-8262 |
| DOI: | 10.1007/s11785-019-00908-z |