Proximal Point Algorithms for Quasiconvex Pseudomonotone Equilibrium Problems
We propose a proximal point method for quasiconvex pseudomonotone equilibrium problems. The subproblems of the method are optimization problems whose objective is the sum of a strongly quasiconvex function plus the standard quadratic regularization term for optimization problems. We prove, under sui...
Uložené v:
| Vydané v: | Journal of optimization theory and applications Ročník 193; číslo 1-3; s. 443 - 461 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
Springer US
01.06.2022
Springer Nature B.V |
| Predmet: | |
| ISSN: | 0022-3239, 1573-2878 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | We propose a proximal point method for quasiconvex pseudomonotone equilibrium problems. The subproblems of the method are optimization problems whose objective is the sum of a strongly quasiconvex function plus the standard quadratic regularization term for optimization problems. We prove, under suitable additional assumptions, convergence of the generated sequence to a solution of the equilibrium problem, whenever the bifunction is strongly quasiconvex in its second argument, thus extending the validity of the convergence analysis of proximal point methods for equilibrium problems beyond the standard assumption of convexity of the bifunction in the second argument. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0022-3239 1573-2878 |
| DOI: | 10.1007/s10957-021-01951-7 |